
English Version 2.12

Engineering

BatchXpert Engineering 1/283

Content

About this Manual .. 4

Overview ... 7

Overview for Advanced programmers ... 10

Installation of Multiple SQL server versions in parallel .. 12

Global Communication View .. 13

Log files and how to view them .. 15

Database Synchronization .. 16

Default Usernames and Passwords .. 17

Station Settings and Projects .. 18

BatchXpert SDK ... 21

Project Engineering Tool .. 22

Taglist and importing .. 24

PLC code generation ... 29

Creating a New Project ... 32

Copy data from another Project’s database. ... 34

Tips for handling Projects ... 36

Special Considerations for Simatic S7-1500 ... 37

Connecting to a S7-1500 or S7-1200 PLC ... 40

Special Considerations for Simatic S7-300/400 .. 44

Simulation of PLC .. 45

Required PLC Hardware Configuration Settings ... 48

PLC retentive data .. 50

PLC Time Synchronization .. 56

PLC Overview .. 58

The “Trans xx” blocks for IO signal transfer ... 62

TIA-Portal .. 64

TIA Portal: Recommended way to modify Control module data blocks .. 67

Global Signals and Symbols .. 69

General Structure of Control Module DBs ... 72

Actuators (Act) .. 74

Actuator Interlocks ... 82

Digital Inputs (DIn) .. 87

Analog Input (AIn) ... 92

BatchXpert Engineering 2/283

Analog Input Scaling ... 98

Polygon Tables .. 103

PID Regulator (PID) ... 105

PID Regulator Output Scaling ... 111

Counter Module (Cnt)... 113

Message Module (Msg) .. 117

Alarm Groups .. 120

Software Switch (Switch) .. 124

Frequency Converters .. 126

Material Modules ... 135

Process Unit .. 140

Unit Data block ... 145

Unit Function Block .. 147

Unit Parameter Module .. 154

Unit Phases ... 158

Unit Status Signals: “Phase Active” .. 168

Subphases (Phases inside Unit Phases) .. 171

Recommendations when implementing a Phase ... 176

Unit Properties ... 178

Unit Status .. 180

Starting a unit with an existing or new Batch... 181

Shared process Resources .. 184

Recipe Options.. 187

Run and Hold timers. .. 189

Event recording .. 190

Unit-to-Unit Communication .. 192

Some Common Help functions ... 203

“Class” Programming .. 205

Production Planning System ... 217

PLC-to-PLC communications ... 218

Extending of Control Module Data blocks .. 224

Overview of HMIs ... 227

"Visu Extern" System (Touch Screens) ... 229

Process Graphics with VisXpert .. 231

BatchXpert Engineering 3/283

BatchXpert Process Screens ... 236

Process Graphics Style Guide ... 240

Application Start Script ... 243

The HMI Main Menu .. 244

Configure communication with the PLC ... 246

Diagnosing PLC communication problems ... 248

Endianness .. 250

HMI Tag names ... 251

Status Tag Definitions of Control modules ... 252

The HMI Library .. 260

Adding a new PLC to the HMI ... 264

The Batch Module .. 267

Show Trends with VisXpert ... 268

Record custom Trend Value ... 271

Adding Batch Number, Step number and Phase .. 272

Adding Batch Number to Trends .. 274

PLC backup .. 276

Operating Station Backup ... 277

Recommended Settings for Touch Panel use ... 278

System Hardening and Operating system Security .. 280

Virtualization .. 283

BatchXpert Engineering 4/283

About this Manual

The BatchXpert system is a system for controlling, managing,

and visualizing batch processes, incorporating batch

reporting, protocols and recipes, batch tracking with

materials, trends, alarms, BatchXpert station and/or HMI.

BatchXpert is a modular system that can be adapted to a wide

variety of use cases, and can manage whole production

plants, such as breweries, but also be reduced for controlling

single CIP stations, or Pasteurization units. The system is

fundamentally divided into three categories, which work

together in an automation project.

Target Audience of this Manual
This manual is directed towards Project engineers that have a basic understanding of the fundamentals of the

BatchXpert system, and process engineering in general. A fundamental understanding of the functionality and

usage of the BatchXpert system is assumed for the purpose of this manual. Furthermore, basic knowledge of

Automation technology and Programming with Simatic S7 style controllers is also assumed.

This manual tries to teach the basics of how these concepts are applied in the BatchXpert control system and is

not intended as an introduction into PLC programming in general. Basic knowledge of PLC Programming and the

usage of their tools, such as “Simatic Manager” and “Simatic TIA Portal”, are required.

BatchXpert Engineering 5/283

Version of this Manual
Version 2.0 Initial Version

Version 2.1 Addition of Visu Statuses section

Version 2.2 Addition of Alarm Groups
Addition of Hardware Settings
Addition of Taglist
Addition of PLC-to-PLC Communications

Version 2.3 Added many more Actuator Interlock examples
Added better Unit Function block example

Version 2.4 Greatly improved and extended HMI sections of this manual
Added Security chapter
Added Virtualization chapter
Added Frequency Converter Status Word Descriptions

Version 2.5 Added chapter about PLC simulation

Version 2.6 Added chapter about “Starting Units from the PLC”

Version 2.7 Added PID parameter Examples
Improved “Trans xx” chapter for IO transfer blocks
Added Special Explanations for Analog Input and Output Scaling
Mentioned Incompatibility of “PLC Sim” for S7-1200 from Siemens
Added Database Synchronization Chapter with Time Synchronization
Added Chapter about Analog Input and Regulator Scaling

Version 2.8 Added Chapter about “communication settings” for S7-1200/1500 PLC’s
Added Chapter about “Diagnosing Communication Errors”

Version 2.9 Added Chapter about Sub-Phases inside of Unit Phases

Version 2.10 Added Chapter about data Remanence
Added Chapter about Web server
Added Chapter about “Phase Active” and its equivalent in other Process control systems.
Added Chapters about PLC Backup and PC Backup
Added Chapters about PLC Time synchronization
Added Chapter to explain the “Application.Start” script
Improved Actuator IO Assignment example and added more explanations
Added Chapter about HMI Main Menu
Added Chapter about adding Batch Number, Step number and Phase
Minor improvements in other chapters
Improved Chapter about HMI library, HMI Main Menu, Adding a new PLC to the HMI

Version 2.11 Improved Trend Configuration section
Added explanation of “Batch Module”
Added “Process Graphics Style Guide”

Version 2.12 Added TIA-Portal Recommendations
Reordered some chapters to make more logical sense
Added chapter on how to modify existing Control module data blocks
Improved Project Engineering tools and SDK Chapters
Added Log files chapter

BatchXpert Engineering 6/283

Added Item “Communication load” to S7-1500 hardware settings
Added item about “Touch monitor” recommended settings
Added Overview for Advanced programmers coming from Braumat or Botec

BatchXpert Engineering 7/283

Overview

VisXpert Scada
BatchXpert is based on the VisXpert Scada system. This system is used as the main SCADA component, and

manages communication with the Plc. It is responsible for the Process graphics, Alarm management, Trend

recording but also the recipe downloads and historical data recording. This means that BatchXpert fundamentally

requires the VisXpert SCADA to work properly.

VisXpert comes with an already prepared HMI library, which incorporates all functionality of BatchXpert and

allows you to rapidly create process graphics with all the functionalities available. The Process symbol library also

supports updating from a library, which enables you to easily update the symbol library in a project with newer

and improved versions, and with versions that have bug fixes applied.

Software Architecture
VisXpert is a modular SCADA system that allows extension by “Modules” which can interact with the Scada

system. BatchXpert integrates several modules into VisXpert to allow its specific functionality. These modules give

BatchXpert access to the variables defined in VisXpert and to interact with all its functionality. A log of

functionality is implemented using VisXpert modules.

BatchXpert Engineering 8/283

The Database
BatchXpert stores most of its configuration and historical data in an SQL database, where all the tools have access

to this data. As database the “Microsoft SQL Server Express” is used, which will be installed from the Installation

Center.

While working with the database you must keep in mind that these database files will be updated when started

with newer versions of BatchXpert or the SQL server, and after that are not compatible anymore with previous

versions.

Considering this you must keep in mind two cases:

1. If you start a project with a newer version, the database may be updated to support new functionality. In

that case it will not be compatible anymore with the previous BatchXpert versions. For example, if you

start a project created for BatchXpert V1.8 with V1.10, some database updates will be applied, and after

that you cannot open the project anymore with V1.8.

2. If you installed a newer SQL server version, the server itself will upgrade your database file, which makes

it incompatible with previous versions. For example, if you have a database file for SQL server 2019 and

open it with SQL server 2022, it will be upgraded and afterwards cannot be used with previous versions of

SQL server.

When starting the project, both cases will give you a clear warning and the option to abort or allow the upgrade.

Keep this in mind when you are doing engineering for projects that are already deployed.

To mitigate the first problem, you should always update the deployment on site when doing engineering or

temporarily downgrade your BatchXpert installation when doing engineering.

For the second problem you can follow the instructions below to support multiple SQL server versions.

PLC
The PLC program was made as a program based on S7 platform, so it can be used on all S7 PLCs. For BatchXpert, a

special standard was implemented in programming, with modularization, standardization of programming with

the creation of standardized interfaces, to achieve considerable improvement in process engineering times. In

this Program, several Criteria were considered – from short cycle times to the preparation of the program with

various prepared and standardized processes.

The PLC programming follows an “Imperative/Declarative” programming style, although you can apply techniques

as you see fit.

Tia Portal and Simatic Manager
BatchXpert is programmed in “AWL” (Anweisungsliste) or “STL” (Statement List) in English. Both programming

environments support this language. You can choose whatever programming environment you prefer.

Most of the Examples are based on the older “Simatic Manager” but should work without problem on “Tia

Portal.”

We Recommend that you use “Tia Portal” for all new projects but not upgrade existing projects.

BatchXpert Engineering 9/283

By default, SQL Server is always Local
By default, each BatchXpert station has its own installed SQL Server. This means that each station only utilizes its

locally installed SQL Server service. Network functionality is usually not enabled on these SQL Server instances,

since all database accesses are always local.

This is being done to improve the system’s reliability, by eliminating a common point of failure which would be a

centralized SQL Server. To maintain the same system configuration between multiple stations, BatchXpert

includes a synchronization service that synchronizes the project database between all stations.

This means that all database access is always located on the computer, and do not need network access for its

configuration data.

You can however configure batch expert to use a centralized server, but this is not recommended, and the system

is not explicitly designed for this use case.

BatchXpert Engineering 10/283

Overview for Advanced programmers

In this section we want to give a small overview for programmers that already have experience in other control

systems such as Braumat, Botec, BrewMax or PCS7.

General
BatchXpert PLC programming is like other control systems such as Braumat or Botec systems. Programmers

familiar with these systems will find it exceedingly easy to transition to BatchXpert.

BatchXpert uses the VisXpert SCADA system as its main SCADA application. This system was first developed by

Gefasoft under the name of “GraphPic”, and then later acquired by Mlogics for further development and support

in the BatchXpert Control system.

Recipe execution
Configurations such as faces parameters and recipes are all stored in an MS-SQL database. If a unit requests a

recipe, this request is observed by the Skype application which in turn loads didn't require data from the database

compiles the recipe and downloads it to the requesting unit. This data includes steps to be executed and set point

parameters for each of these steps. From then on, the PLC takes over the execution of this recipe step by step by

executing each of the programmed phases in the PLC. This is like systems like Braumat or Botec.

PLC Control modules
In BatchXpert, all control modules of all types are automatically executed

and processed by the PLC framework. This means that you do not need to

call a function for any of the control modules, BatchXpert internally

executes all existing control modules that are available in the control

module data blocks. The system checks the amount of control modules

present in these data blocks and executes every one of them automatically,

without the need for the programmer to call any control module functions.

This means that you can consider control modules as a commodity resource

that you can just use in your PLC application.

All control modules of the same type are all contained in one single data

block. This means that all actuators, for example, are all in the same data

block and are a global resource. You can assign control modules to specific units; this however only affects

reporting and alarm groups. Control modules are always considered global and do not belong to a specific unit in

and of itself. Of course, actuators are usually assigned to the automatic status of a specific unit, they can however

be used by any other unit that wants to activate the automatic control (Aco) for example.

BatchXpert Engineering 11/283

SCADA Control modules
A similar concept applies to the communication between the PLC and

the HMI application. Since the PLC always executes all control

modules that are available in the PLC, the VisXpert SCADA system has

all the variables for all controlled modules already preconfigured. This

means that if you need a new control module you can simply use it in

your HMI application and since GPLC already executes the appropriate

module and all variables already exists you do not need to call the

control modelling appeal C nor do you have to import variables into

your SCADA application. All variables for all control modules always

exist in all the SCADA applications. This is possible because VisXpert

does not limit the number of configured variables by its licensing

model.

Unit Execution in the PLC
When you work in the PLC, and a unit is executed, the unit will always copy its unit data block onto a generic unit

data block called “Bx Uxx”. This means that if you want to refer to your unit data block from inside of your unit

function code, you can and should do so by always referring to the generic unit data block “Bx Uxx”, which will

always contain the current data of the unit that is currently executing.

This has the advantage that you can write the same code in different units, without the need for adapting data

block numbers and such since the unit itself will always copy its unit data to the generic unit data block and back

after the unit function code is executed. You can find further information here The “Current Unit Data block”

(DB100)

Unit to Unit Communication
BatchXpert Includes a concept for communication between multiple

units in a standardized way. This system allows you to select a

communication partner, send signals to this communication partner,

receive signal from the selected communication partner and allocate the

communication partner for exclusive use. This system automatically

handles unit allocation, and thus eliminates problems caused by multiple

part and units trying to communicate with the same unit. More

information here Unit-to-Unit Communication.

BatchXpert Engineering 12/283

Installation of Multiple SQL server versions in parallel

For more details about the installation, you should review the “Manual BatchXpert Installation on Windows“

manual. However, there are complementary things that should be mentioned for project engineers.

Since the SQL server database files cannot be used once upgraded to a newer SQL server version, you should

always do engineering with the same version as you have deployed on site. Since this may mean that you have

multiple versions of SQL server, you should consider installing multiple SQL server versions in parallel.

If you get the SQL server warning when opening a project, you can then just change the server version you want

to use in the “Management Console” and start the project, with the same version as deployed on site.

Manual Installation
By default, the database server is called “GraphPic,” which is the instance name of the server as the “Installation

Center” will install it. If you want to install a different version, you will have

to choose a different “Instance Name” for this server, for example

“GraphPic2022” etc. To be able to choose different Instance name, you

cannot use the Installation center to install the SQL Server, as it always

installs with the default “Instance Name.” You can download the SQL

server installer from the installer, but then execute it manually, which gives

you access to the configuration dialog where you can configure the

“Instance Name” among other settings. After downloading, the installer file

will be in a sub directory called “Setups” of your Installation center.

Select current SQL server instance.
After installing the different versions, you must specify which

“Instance Name” and by extension which version of SQL server

you want to use for engineering.

You can change the SQL server instance that is being used by

all BatchXpert applications by opening the “Management

Console” and changing the “Server Name” in the “Database”

settings.

BatchXpert Engineering 13/283

Global Communication View

The BatchXpert system uses standard communication interfaces and supports various communication systems

from the PLC to the Automation Field. The following is a summary of the communications:

The BatchXpert system supports connecting "BatchXpert Stations", "HMI Displays" and other equipment through

an Ethernet network with TCP/IP, which can be managed with standard tools for Ethernet network management.

It is also possible to connect laptops through "Wi-Fi" access points and provide a form of remote control for

smartphones or tablets.

Communication between PLCs should take place at a separate PLC port (if your plc has two Network interface

controllers), thus preventing BatchXpert network communications from interfering with the exchange of data

between system controllers.

The customer has the option of connecting the system to their corporate network and/or the internet to access

the databases and to enable the possibility of Teleservice (through "TeamViewer", please read the "TeamViewer

Teleservice Manual").

The field communication is conducted through "Profibus" or "ProfiNet" interfaces that are industrial standards

and allow us to connect to a wide variety of equipment such as IO systems, olive harvesters, meters, etc.

Example Simple Network Layout
This is a simple layout, and does not include hardware firewalls, DMZs, or other advanced IT infrastructure. Of

course you Can extend this simple diagram to include these options.

BatchXpert Engineering 14/283

Default Communication Interfaces
BatchXpert uses and supports the following communication interfaces.

• PLC to Operating Station: S7-Connection through a Simatic driver. Optimized data blocks of S7-1500 are

NOT supported.

• Fieldbus: Profibus, Profinet, HART and ASI and any other fieldbus implementable with Simatic plc’s

• PLC to PLC: Can use any connection supported by your plc. Usually these are S7-connections or ISO-TCP

connections. We recommend S7-Connections because they are easier to use.

• Operating Stations to Operating Stations: The stations use a proprietary protocol based on TCP/IP

BatchXpert Engineering 15/283

Log files and how to view them

All BatchXpert applications write log files where you can review errors and debug messages to find out if there

have been some problems or if the system is functioning as intended. You can view these log files by using the

“Log File Viewer”, which can be easily found in the start menu.

Location on Disk
All log files are stored in the “C:\Daten\Logs” directory in your Hard drive. Log files can be opened in any regular

text editor; however it is usually easier to use the log file viewer.

Setting the Log level
The amount and depth of the log messages that are getting written by the applications depends on your log level

setting. You can change this setting by opening the “BatchXpert Management Console” and opening the

“Logging” section.

However keep in mind that after changing the log level setting you usually have to restart your applications order

for this setting to take effect, since the setting is only read once when an application starts. This means that it is

usually easier to restart the whole project after changing this setting.

BatchXpert Engineering 16/283

Database Synchronization

Since each BatchXpert station uses its own local SQL Server and configuration database, BatchXpert includes a

synchronization service that synchronizes all databases between each other.

The data Synchronization is being performed by the “BatchXpert Synchronization Service” and operates in an

“Peer to Peer” fashion. Each BatchXpert Station connects to all other Stations in the Network. Each Station checks

all other station if they have actualized data, and if so, downloads

them from the station with the most current data.

Each Project that is started on a BatchXpert station has an Identifying

Number, and only Stations with the same Identifier are allowed to

Synchronize data between each other. This allows various BatchXpert

Applications to run on different stations, without mixing data during

Synchronization.

You can find more detailed information in the “Manual BatchXpert Data Synchronization” Manual.

How do Stations Discover each other
Each station tries to establish communication with each of the configured

Stations in the Batch Configuration database. In the Batch Configuration

Database one can define all stations existing in a network with their

corresponding IP Address and Network Names. After connecting the

configured stations, the stations start a Discovery mechanism on the

network to find Stations that are not configured in the Database. If a Station

is discovered, communication is being established to this station.

When a Connection is established, the Station first checks if the Stations are compatible for Synchronization, and

if not, the connection is rejected, and a message is sent to the user. During connection, the following is checked

for compatibility:

• System time of both stations is within 1 minute of time difference

• Both Stations have the same SQL-Server Version

• Both Station have the same Project Name

By default, the discovery mechanism is using UDP Port 3702.

System Time
The system time is very important on the Stations, since this is required for accurate Timestamping of all changed

data. To avoid problems during synchronization, the System Time difference between the stations is permanently

monitored between them. If any station has a difference of more than 1 minute, it is rejected by the other

stations and can no longer participate in the synchronization. In the case of a Time difference, a Message is raised

to the operator, to indicate this kind of error.

For this reason, it is important to keep the System time synchronized between the Stations.

To set up the time synchronization you should view the “Manual BatchXpert Time Synchronization” manual,

which describes the process in more detail. The manual can be found on our Knowledgebase

(www.docu.mlogics-automation.com/batchxpert-2/engineering-2/)

For more information about how to adjust the Time in the PLC please review PLC Time Synchronization

Figure 1 The Project Name is used as Identifying
Number

Figure 2 Station Configuration in the Batch
Configurator

BatchXpert Engineering 17/283

Default Usernames and Passwords

BatchXpert by default uses the following passwords that should be changed before deploying the application.

Application Username Password

VisXpert Admin <no password, leave empty>

VisXpert Admin MLogics

PLC None None

Database (old) sa Delphi

Database (new) sa GraphPic2023

S7-1500 Web Server Admin BatchXpert1

BatchXpert Engineering 18/283

Station Settings and Projects

BatchXpert divides its settings between “Station Settings” which are station global and settings that are project

dependent. BatchXpert includes an “Management Console” that allows you to adjust most of these global station

dependent settings, such as the stations Master Number, or the automatic backup system.

Projects contain all the configuration of BatchXpert applications, such as the SCADA images, Database

configuration, plc programming and historical data.

Master and Slave Stations
BatchXpert stations are divided into up to 8 Masters and as many Slaves as you need. Each Operating Stations is

assigned a Master number (Master 1 up to Master 8), and all other stations will have the “Slave” designation.

Usually, all the BatchXpert stations are masters, so slaves are only used if there are more than 8 operating

stations in a system.

Each master will use one of the 8 communication channels, designated by their master number. This

communication channel allows the master to receive Recipe requests, record historical data and perform other

actions.

To avoid problems with these communication channels, programmers should always use “Slave” on their

engineering stations and programming notebooks when executing the System. This setting can be set to Slave

from the “Management Console.”

Setting the Master Number
In the “Management Console” you can set the stations master number

to use or set it on “Auto”.

If set to “Auto” it will look up the configured master number by using

the stations Hostname in the “Computer list” of your Project

configuration.

Usually, it is best to leave this setting on “Auto” and fill in all computer

names into the “Computers” list in the “Batch Configuration.”

In a BatchXpert system, the default operating stations are set to

the following names.

• BX01 for the first server

• BX02 for the second server

• BX03 for the third server

• BXSlave1 for the First Slave

• ...

BatchXpert Engineering 19/283

Important Directories
BatchXpert relies on a few important folders to function properly:
C:\Daten

There are several folders that correspond to different system functions.

• Backup: Contains system backups

• Logs: contain information about the events of each tool

C:\Program Files (x86)\BatchXpert

There are folders where we can find information and the executables of the BatchXpert tools.

• Documentation: contains manuals for programmers and operators in different languages on how to use

BatchXpert, as well as information on the BatchXpert license.

• Reports: in this folder you can find the templates of the different reports that can be generated by

BatchXpert (Batch Sumy, Recipe Report, Report with Menu...).

• Tools: These are additional tools from BatchXpert (Command line Tools).

C:\Program Files (x86)\BatchXpert SDK

There are additional BatchXpert tools and templates for the programmer, it is oriented to the compatibility of the

different software with the BatchXpert system and HMI, to minimize the engineering time, the installer of the

BatchXpert SDK is required.

• Documentation: contains manuals for programmers on how to use the BatchXpert, HMI and PLC tools.

• PLC: contains templates for the S7 PLC (Vipa compatible)

• Tools: Contains templates for project documentation (Taglist, Project Information) and tool executables

(Installation Center, Command line Tools).

• Visu: you will find the templates for the visualizations (GraphPic, Movicon, WinCC Flexible).

The Project Directory
Each Project has a similar sub directory structure and contains the

following directories:

• Backup: if backups are created, they are stored in this directory.

• Data: contains all the database “*.ldf” and “*.mdf” files that form

the databases that hold the Configuration, and the historical data

• Engineering: is the directory where the “Project engineering tool”

creates its generated data. It also holds the Tag lists that are imported

into BatchXpert.

• PLC: Contains the current Plc Project(s). You should keep your plc

programming projects in this directory, so it always forms part of the

project.

• Reports: is where all report templates that a user creates are

stored. Report templates are used to create report printouts and for exporting tabular data.

• Tools: if you have custom tools that you use for your project, you should put the source code of them in

this directory. This may include for example tools that send recipe lists to WinCC Comfort panels or

Profinet monitoring applications, or similar custom tools.

• Visu.: This is where your HMI systems projects are located. This is the directory where your “VisXpert”

Project is located.

BatchXpert Engineering 20/283

Command line Tools.
BatchXpert comes with some command line tools that may help you accomplish common tasks related to

BatchXpert. These tools can be found in:

C:\Program Files (x86)\BatchXpert\Tools

In this directory you can find many tools, such as “Command line tools” that you can use. All the Command line

tools can be executed with the “-?” para meter to get an explanation of the command lines they support.

BatchXpert Engineering 21/283

BatchXpert SDK

To facilitate the generation and execution of an automated project with BatchXpert, there is the "BatchXpert

Software development Kit" also called "SDK". This package installs all the engineering tools and templates for

both the controllers and the display systems.

The most recent version of the SDK can be obtained from the following link:

MLogics Documentation – VisXpert and BatchXpert (mlogics-automation.com)

It is recommended that you use the same version of the SDK with the same version of BatchXpert that is used in

your project. For new projects, it is recommended to use the latest versions, to take advantage of system

improvements.

Installation directory
Once installed, you will find the following folders inside the

installation folder:

• Visu: This folder contains the project templates for all

supported visualization systems of the BatchXpert

system. The appropriate file should be copied to the

engineering folder, extracted, and adjusted to suit the

needs of the project.

• PLC: Contains the templates of the supported PLCs of

the BatchXpert system. As with the visu, you need to

copy it to the engineering folder, extract it, and adjust

it.

• Tools: Contains useful engineering tools, such as Taglist

Templates, a SQL Database Management Tool, and

several other tools

• Documentation: Contains many Manuals, which are not included in the normal installation of BatchXpert,

as they are intended for an Engineer and not for Operators.

Tools
Several tools will also be installed, such as the "BatchXpert Project Engineering

Tool" that allows importing, exporting, and generating data for PLCs and HMIs

based on the system's current engineering database. This tool can generate

alarm messages for the HMIs, data blocks for the PLC and others.

Here you can find more information about the Project Engineering Tool.

In the “Tools” directory you can find other tools that can be helpful when

engineering projects.

https://docu.mlogics-automation.com/

BatchXpert Engineering 22/283

Project Engineering Tool

One of the main tools of the “BatchXpert SDK” is its

“Project engineering tool.” This application

incorporates many functionalities that help you to

solve many engineering problems that you will face

when implementing projects with BatchXpert.

The functions include:

• Import Taglist

• Export and generate Taglist from current

configuration.

• Generate IO Symbols for your PLC

programming.

• Create IO Transfer blocks.

• Create Alarm groups.

• Create Tag variable files for many HMI systems, such as WinCC Comfort, Movicon, etc.

Where to find the “Project Engineering Tools”
After installation of the BatchXpert SDK. You can directly type project engineering tools into your windows and

start menu to start deep project engineering tools. To be able to use most of the code generation functionality,

you must open a project's pet project first. If you don't have a project yet you can create a new one Creating a

New Project, and then opening or starting it.

You can also find the tool inside the “BatchXpert SDK” installation directory which usually is: C:\Program Files

(x86)\BatchXpert SDK

What data does the Project Engineering tools use
Most if not all code generation and other utilities that the project engineering tools provides, are based on the

data configured in your configuration database. You can use the “Batch Configuration” to edit your database,

create classes, phases, recipes etcetera.

All operations that the project engineering tool provides are based around this configuration database. There are

tools to efficiently update this configuration, such as importing tag lists, or deleting all controller modules of a

PLC.

General Database Operations
One of the most useful functions can be found in the database general operations section of project engineering

tools. There you can find useful actions that should only be activated during engineering of a project, since they

BatchXpert Engineering 23/283

can delete all configured process modules, such as phases, recipes and classes, and they can also delete all

configured control modules.

These functions are useful when starting a new project where you must delete all the existing configuration, or

when you want to delete all control models of PLC, to import them again by using the tag list import function.

There's also an option to delete all the historical recorded data, which should always be done before starting

commissioning on new project, so that all recorded historical data that you have recorded during testing it's not

going to be deployed to the client. Of course you should never delete historical data on site.

BatchXpert Engineering 24/283

Taglist and importing

A Taglist is an Excel file that contains the configuration of each of the control modules of a project. This Taglist can

be imported, exported or an existing one can be updated. A Taglist allows you to efficiently modify existing

control modules, or add new modules to a PLC. All Taglist belong to one single PLC and have one “Worksheet” for

each Control module type. Each “Worksheet” has one column per property, and each row represents one single

control module of a type.

New Tag lists
And the template for Taglist is included in the BatchXpert SDK. You can find it in the following directory of your

BatchXpert SDK installation:

D:\Program Files (x86)\BatchXpert SDK\Tools

Alternatively, you can also create a new tag list, from an existing project by using the project engineering tools

(Taglist Export). This allows you to create new tag lists in case they are lost or update existing tag lists in case they

may not be up to date. In the case of an export the provided tag list will be updated with the current information

stored in the database, but custom data is still retained in the existing Taglist. This way you can update existing

lists without the fear of losing existing data.

BatchXpert Engineering 25/283

Taglist import
When importing, the” Project engineering Tool” will go

through each column of each worksheet and look up the

data for specifically named columns. This means that you

must follow the following rules when working with Taglist

:Rules to follow when working with tag lists

To import a file, select the file to import, select the PLC

where the data should be imported into, Check the

modules types you want to import and then click

“Import.” The import starts by creating a backup and

placing it in the backup directory. After that It will import

each row with the following rules:

• If a Control module with the same “Number” of a Type already exists, the information will be overwritten

with the information from the Taglist.

• If no control module with the same “Number” of a Type already exists, a new module will be created with

the information defined in the Taglist.

• No Module will ever be deleted from the database. So, if some modules are missing from the Taglist, they

will NOT be deleted from the project. Since they do not appear in the Taglist, they will simply remain

untouched.

• If you want to remove modules, this must always be done manually by using the “Batch Configuration.”

Taglist Export
Exporting works similarly to importing, except it transfers data form the project into the Taglist. It allows you to

select an existing Taglist, which will be updated, instead of overwritten. This allows you to “Update” Taglist from

the Taglist, without losing cell styling or additional columns. The export functionality will go through all project

control modules, try to find a corresponding row in the excel Taglist, and update the corresponding columns,

without removing or changing custom columns, that you might have added.

One of the first tasks when engineering and BatchXpert system, is the creation of a so-called tag list. A tech list is

a Microsoft Excel file that contains definitions for all control modules of a single PLC. It defines the control

modules number, IO assignment, names and descriptions. Checklists can easily be imported, exported and even

be updated by using project engineering tools. For more information about how to import Tag lists: Taglist

import.

NOTE: Creating A tag list should always be the first step when starting a new batch expert project, since it forms

the basis of all further work on the HMI and the PLC. Most importantly, the data that you define in Tag lists, sill

form the basis for further code generation particularly the generation of trans IO blocks.

BatchXpert Engineering 26/283

General Structure
Taglists are designed to be easy to work with and contain one “Excel Work Sheet” per control module type, which

defines all control models of a specific type. These control module specific work sheets contain one column for

each metadata of a module, and one row per control module of the specific type.

One of the most important metadata information of the control modules is there I assignment generally done in

the IO column, of each control module type.

Rules to follow when working with tag lists
Detect lists are designed to be extendable and easy to work with. You can add custom columns and even reorder

existing columns, however you should follow the following rules when working with tag lists, to be able to import

Tag lists using the project engineering tool.

• The default Column names cannot be changed and must remain as they are. If they are changed, the

Engineering tool cannot identify the column, and the import will fail.

• The first row of each “Worksheet” must contain the column names, and all subsequent rows will be

imported.

• “Empty” rows can exist. If the Import detects that there is no “Symbol” (also known as Tag name or Code)

defined for this control module row, it will simply ignore it. Your Taglist is not required to be contiguous.

• You can reorder the Columns if the names stay the same.

• You can add custom Columns to your Taglist. These columns will simply be ignored. The columns can have

a name if they do not collide with an existing columns name. This function is particularly useful to add an

“Tests” column, so you can keep track of tested columns during IO testing.

• You can apply any “Cell Style,” font, size, border, or any other style you like. As said before, only the

names of the first-row matter.

• The Taglist can be if you like. However, keep in mind that you will not be able to have 50.000 Actuators in

your Plc.

The Unit Assignment Column of all Control Modules
All control modules allow you to assign them to a specific Unit. This assignment is used to automatically generate

Alarm groups and for reporting errors to specific Units. All control modules can be assigned to a Unit, by inputting

the unit number into the “Unit Assignment” column of a tag list.

To be able to assign a control module to multiple units, you can write the values as a list, separated by a Coma.

BatchXpert Engineering 27/283

In the Above example, the control module will be assigned to both, unit 2 and unit 3 of the PLC of the control

module.

All Unit numbers in the Unit Assignment field, always refer to the same PLC where the Control module lives in.

However, BatchXpert supports assignments of Control modules to Units in different PLC’s, for reporting purposes,

but currently you cannot use the Tag list to make these assignments to Units in different PLCs than the Module.

To assign Modules to Units in different PLCs, you must assign them from the “Batch configuration”.

BatchXpert Engineering 28/283

Class definitions of Units
The tag list contains an excel worksheet for units, that allows you to define the corresponding processing class

that is defined in a batch configuration tools. In this column you can input the class identifier that you can obtain

from the batch configuration utility, or the literal name of the class that you want your unit to be assigned to. If

any class name is ambiguous, you can optionally add the Batch area name separated by period.

Class identified by its Class name:

Class identified by its Batch Area and Class Name:

Class Identified by its Class ID

BatchXpert Engineering 29/283

PLC code generation

This option allows you to generate a variety of code blocks, which can be imported into either Simatic manager or

Tia Portal. The data block and function block code generation is based around applying data to templates. You can

customize these templates and Project engineering tool will use these templates for their code generation. The

generated files can then be imported easily into your PLC programming software, usually tia-portal.

All generated code files are being stored in the engineering subdirectory of your project. From this directory you

can import them into your engineering software. The process of importing and compilation of these files depends

on the type of software used for your PLC programming.

You should read TIA-Portal on a guide on how to import files into “TIA-Portal”.

Customizing Templates
The tool supports custom “Plc code templates” that are being used to generate the data blocks with. This allows

you to customize the code being generated. The template is stored in the “Engineering” directory of your Project.

If no templates exist, the system will use the system default templates, which should be good for about 99% of all

cases. If you want to customize them, you must copy the default templates by clicking “Copy default templates”

to the Project’s Engineering directory. After that you can customize them.

Generate symbolic.
This will generate IO and block Symbolic files that can be imported into either Simatic Manager or Tia Portal. It

generates all symbolics for Inputs, Outputs of all used control modules. It allows you to assign symbols to all your

Inputs and outputs.

You should read TIA-Portal for recommendations about import settings for “TIA Portal”

BatchXpert Engineering 30/283

Generate Data block.
This will create the initial Control module data blocks with the configured module description from the database.

This is usually done only at the beginning of a project, since later updates of the data blocks are non-trivial since

they require a data block download, which should not be performed.

As a rule, you should use this functionality only at the beginning of a project, and then update the data blocks

manually, or carefully plan a data block download.

When generating data blocks for control modules you can set the amount of control models to be created in

these data blocks in the settings of your project engineering tool. This setting basically allows you to set the

number of spare modules to be created in your data blocks. You should evaluate a tradeoff between memory

consumption of your control module data blocks against already existing spares that can be easily used in your

PLC application without downloading the control module data block.

D data block generator will always create all your configured control modules in your current project and then will

append spare modules until reaching is set number of modules to create. You should choose these values

according to your project needs and available memory in your PLC.

Generate TransIO Blocks
This generates all IO assignment blocks, which will link your control modules to the configured Inputs and outputs

of your PLC. How this works is described in more detail in the “Trans xx” blocks for IO signal transfer” section of

this Manual.

Trans_xx#_The_

BatchXpert Engineering 31/283

Generate Alarm Groups
BatchXpert allows you to assign control modules to units. Keep in mind that you can assign one control module to

multiple units, in which case it belongs to all the configured units. Based on this information, this option will

automatically generate the function block that assigns all these control modules to the “Unit Alarm Group,” so the

alarm group can be used in the HMI system.

BatchXpert Engineering 32/283

Creating a New Project

When starting the implementation of a BatchXpert

application, you first must create a new Project.

This can be done easily by using the “Project

Engineering Tool.”

When opening the Engineering tool, you may

encounter an error related to a nonexistent server,

project, or database. This is because you have not

started any BatchXpert project yet, so there is no

database yet.

Create new projects.
“Create new Project” is the easiest way to create a

new Project. The other two options “Create from

backup file” and “Create from current installation”

are meant for legacy project conversion and not

relevant for new projects.

When creating a new project, you can create it based on existing databases and Hmi projects, use default Hmi and

database or none. You should choose the default “Empty” options. This will create a project with a default

database and HMI Project for you. The default database already contains some example configurations which you

can easily remove if needed.

Clear existing database (Optional)
If you want to remove all configurations from a database, for example to remove the whole example

configuration, you can use the “Project Engineering Tool” for this. In the ”Database/Database operations” you will

find options to clear several parts or all the configuration from your database.

There is also an option to remove all historical data, which of course should never be done on site, but always be

done before commissioning begins.

Plc Template
After creating a project, you must prepare your plc application. The BatchXpert SDK distinct options of Projects

for you in the “C:\Program Files (x86)\BatchXpert SDK\PLC” directory.

You must choose your project based on the Project architecture and programming environment you want to use.

There are projects for:

• S7-300/400 in Simatic Manager

• S7-300/400 in Tia Portal

• S7-1500 in Tia Portal

• S7-1200 in Tia Portal

After selecting an appropriate solution for you, you must copy and extract the template folder into the “PLC”

directory of your project.

BatchXpert Engineering 33/283

Hmi Template
This step is only necessary if you are using other HMI systems apart from the integrated VisXpert SCADA. If you

are using for example a WinCC Comfort panel, you must extract the appropriate project from the HMI Template

folder located in:

“C:\Program Files (x86)\BatchXpert SDK\Visu.”

This project should also be copied into a sub directory of your “Visu” directory in your Project directory.

If you are only using the integrated VisXpert SCADA, this is already done by the project creation itself and no

further action is required.

Database
The database lives in the “Data” directory inside your project directory. BatchXpert uses “Attached” Sql server

databases, which means that the files will be attached to the selected database server when the project is

opened. If no project is open, there is no database since no file is attached to the server. When BatchXpert is shut

down, the database will be automatically detached from the server.

This methodology makes it easier to create backups from projects, since all the data of a project is always

contained in the project directory, including the database, plc, and auxiliary information.

For example, if you need to restore the database manually, you can simply shut down BatchXpert, replace the

“Data” directory of your project from a backup and start it up again with the database from the backup.

BatchXpert Engineering 34/283

Copy data from another Project’s database.

After creating a new project, you may want to copy data from an existing project into this project’s batch

configuration. This works by utilizing the “Import/Export” functionality of the Batch Configuration utility of

BatchXpert.

In the Batch Configuration, you can create an “Import Export” file onto which you can “Drag” batch areas that you

want to export. After saving these can be loaded into another project by opening and “Dragging” them back into

the main configuration window.

You should always export the whole Batch Area, but you can import only fractions of this into your project. You

can import only a single phase, parameter, or whole classes and even batch areas.

Overview

Procedure

To copy data from one project into another, you should follow the following procedure:

1. Open your Source Project and open the Batch Configuration

2. Open the Import/Export window as shown above and click “New” in this window to create a new file.

3. Drag all batch Areas you wish to export into this window. You need to be logged in to BatchXpert with

your username to do this. Info. If you export large Batch Areas, this may take up to 30 seconds and the

application may appear “hung” for a short amount of time.

4. Save the Import/Export file to disk, using its save functionality.

5. Close your source BatchXpert project.

BatchXpert Engineering 35/283

6. Open your destination BatchXpert project and open Batch Configuration

7. Open the Import/Export window and open the file that you just saved to disk.

8. Drag the parts of the exported file into your configuration that you wish to import.

BatchXpert Engineering 36/283

Tips for handling Projects

Keep the plc program in project directory.
In your project directory you should have a sub directory called “PLC” where you should always maintain your

current PLC application project. In fact, you should leave it in the project directory and work directly from there.

You should not create separate “PLC Project Backups,” but rather “Full Project Backups” of your project directory

that includes all the project’s data, not just the plc or everything except the plc project.

This way you will always have a consistent project and the plc project, and all other engineering material is always

included in all manual and automatic backups.

Keep tag lists in the project directory.
For tag lists we recommend the same procedure as for plc programs, but inside the “Engineering” sub directory of

your project.

Create “Project information” files.
We recommend creating “Project Information” files for each project where you can register all installed versions,

Network addresses and other additional information of your project, including Passwords.

If you also record passwords, you must treat this archive as “Confidential” since it contains sensitive information.

Keep Tools source code in the project directory.
For the same reason as stated above, you should always keep the full source code of tools you have written for a

project in the “Tools” directory of your projects. This way you will always have the exact source code of your tools

available directly in the project directory

BatchXpert Engineering 37/283

Special Considerations for Simatic S7-1500

The S7-1500 and S7-1200 have special requirements for setting up Communications with BatchXpert which you

can review in detail here Connecting to an S7-1500 and S7-1200 PLC

The settings described in the Chapter are needed for running BatchXpert in the PLC, but you also must consider

the special connection settings.

Only non-optimized blocks can be read from any HMI.
The BatchXpert and VisXpert systems only support

reading of “non-optimized” data blocks. All data

blocks that are exchanged with BatchXpert cannot

have the “Optimized” attribute. You can still have

optimized blocks; those just cannot be read by the

HMI. Please keep in mind that Function Blocks FB’s

also have these settings.

You can find this setting in the Datab block and

function block properties under “Attributes.

Activate “Parameter Passing via registers” for Unit Function Blocks
Only for Unit Function blocks you should activate the “Parameter Passing via registers” option in the function

blocks property/attributes.

Tia Portal requires this setting to enable you to call the unit function blocks via “UC” (unconditional call)

instructions without specifying an Instance data block to the function block.

If you do not activate this setting, you must specify an instance data block for the Unit function and call it via the

“Call” instruction. This is possible as can be done, even though you will need to create additional instance data

blocks, which are otherwise not necessary.

We recommend activating this setting, but you can also use “standard Simatic Step 7 calling conventions”.

BatchXpert Engineering 38/283

Remanent Memory
Remanent memory is an important consideration for S7-1500 PLC’s, as they have comparatively a small remanent

memory. Even though they may have megabytes of data ram, only about 200 kb of that is remanent, which for

most applications is just not enough.

We recommend the use of the “Battery buffered Power supply” “6ES7505-0RB00-0AB0”. This power supply

converts all Data RAM into remanent Data ram, thus eliminating the remanent data restriction of S7-1500 PLC’s.

As an Alternative you can use the “Persistence” functionality of BatchXpert, which utilizes the Memory card. This

results in considerable “Wear” on flash memory. The “Persistence” functionality is optimized for this but still

results in about “20-year lifetime” of the flash memory. The Persistence functionality will save modification at

most every 20 minutes, so the” Resolution” is limited to this interval.

A typical Simatic Memory Card will allow 500.000 writes per cell, which at most every 20 minutes will result in

about 20 years of Memory Card life.

See PLC retentive data for more information.

Memory Card
All Simatic PLCs require the use of a memory card, so the 1500 series also require a memory card to function and

will not work without an appropriate memory card. The Memory Card holds non-runtime relevant data from the

downloaded project and should be about 12x the code AND data size of your project.

If you have a project that uses 200kb of Code ram and 300kb of data ram, you should use at least a memory card

with 6MB of Memory.

We recommend a 12MB card since this has enough memory for most projects.

Figure 3 Example Project with about 525 kB of RAM usage and 5.5 MB of memory card usage.

Test DB
Test_DB call can be changed with ATTR_DB Calls. They are similar. Note that the DB_Number is now an UInt,

which makes sense, the DB_Length is now an UDINt and the ATTRIB a Byte as it contains more attributes.

 CALL ATTR_DB

 REQ :=TRUE

 DB_NUMBER :=#UnitDBNo

 RET_VAL :=#SFC_RetVal

 DB_LENGTH :=#SFC_Length

 ATTRIB :=#SFC_WriteProt

BatchXpert Engineering 39/283

Auf DB calls
Especially important. From Siemens Documentation

The data block register DB is set to "0" after each access to the data block with the specification of a fully qualified

address (%DB10.DBW10, "MyDB.Component", for example). A subsequent partially qualified access leads to an

error during compiling.

What that means is that you MUST use an AUF before each indirect Transfer or Load instruction! Yes, every time.

On old Controllers the DB “Stayed” open. Not anymore

Webserver
The new generation of PLC’s integrate a Webserver which allows you to gather diagnostics data, create online

backups and other maintenance tasks. Some BatchXpert utilities, especially the Backup utilities, utilize this Web

server. It is thus recommended that you activate the Web Server. Please see Activate Web Server for more

information.

BatchXpert Engineering 40/283

Connecting to a S7-1500 or S7-1200 PLC

The S7-1200 and S7-1500 PLC series require some settings to be adjusted and considered when setting up

communication with the BatchXpert system.

Since 2023, siemens added encryption and certificates to the PLC Communication channels. Since BatchXpert

utilizes the “traditional” S7-Connections to exchange data with the Controllers, some settings must be adjusted in

the PLC to communicate with the plc.

If you have problems communicating with an PLC, please check the following settings and review the Diagnosing

PLC communication problems

Ping will still work
Please keep in mind, that the S7-1200/1500 series of PLC’s incorporate more advanced communication and

protection mechanisms than the S7-300/400 did. This means that you may be able to “Ping” an PLC, but any

communication request will fail. It may even happen that you can connect to the PLC, but every read and write to

any of the data blocks will fail, because the Communication channel does not have “Set “Full Access” to HMI

applications”.

This manifests itself in the situation where you might have communication for one second, but as soon as

BatchXpert tries to read data blocks, you get errors.

As mentioned before, in all these situations, a Ping will still work properly, even though communication is

restricted or blocked by the PLC. This means that an “PING” is NOT a definitive check for communication with the

PLC, but rather a check for general IP reachability from our computer.

Rack and slot should both be 0
The traditional S7-Connection requires the definition of a Rack and Slot on the PLC to be used for data exchange.

For S7-1500/S7-1200 this does not apply anymore, and thus the Rack and Slot should always be 0 in the

communication settings of the VisXpert driver. You should not set this to any other value, since the PLC might

reject communication and not respond to Communication requests.

The Typ “S7-300/400” setting does not matter.

Full_Access#_Set_
Full_Access#_Set_

BatchXpert Engineering 41/283

Allow “Get/Put”
The S7-1500 by default are blocking “Get/Put” connection, which is what S7-connections use for communication.

This can impact your ability to communicate with your plc via HMI devices and other PLC via any S7-Connection.

We recommend allowing these connections at all S7-1500 plc’s.

Deactivate “Only allow secure PG/PC and HMI communication
Since firmware version 3.0 of the S7-1500 controllers, the option to only allow “Secure” communication to HMI

systems is active by default. This settings means that you MUST exchange certificates between the HMI and the

PLC to communicate with each other. This effectively deactivates the “Traditional” S7-connection mechanism.

If you deactivate this setting, the PLC behaves as bevor Firmware version 3.0

BatchXpert Engineering 42/283

Set “Full Access” to HMI applications
This setting limits the actions that an HMI application can do in the PLC. You should set the access to at least “HMI

Access” or even better “Full Access” to allow HMI applications to exchange data with the controller.

If you do not set this access level, the PLC will reject all communication requests.

Deactivate “Protect of confidential PLC configuration data
This setting is not directly related to communication, but we still recommend that you do not encrypt the

configuration data in the PLC. By deactivating “Protect confidential PLC configuration data”

BatchXpert Engineering 43/283

Activate Web Server
The new generation of PLC’s integrate a Webserver which allows you to gather diagnostics data, create online

backups and other maintenance tasks. Some BatchXpert utilities, especially the Backup utilities, utilize this Web

server. The Web Server allows the BatchXpert Backup utility to connect and download online Backups of your PLC

program.

You should always create an “Admin” user with the default password “BatchXpert1”

Assigning User Rights to your Users
As for TIA Portal V19 and firmware version 3, the plc allows for the creation of different users and access rights.

Please Create your users and assign access rights to them so that you can use these users with our backup

utilities.

You should always create an “Admin” user with the default password “BatchXpert1”

BatchXpert Engineering 44/283

Special Considerations for Simatic S7-300/400

BatchXpert was originally developed to target the Simatic S7-300/400 platform and thus is compatible with this

platform. However, you must consider the following:

Discontinued

“The S7-300 CPUs and associated FEPROM and RAM memory cards MC 951 will be finally

discontinued, following a 10-year phase-out period, as per October 1, 2020. With this

discontinuation, these CPUs and memory cards will no longer be available as a spare part and

can no longer be repaired. State-of-the-art successors are available for all CPUs.”

This Press Release from Siemens means that these PLCs should not be used for new projects anymore and an

alternative should be used.

This statement means that the S7-300 series PLCs should not be used for new projects as of 2020 and will not be

available anymore for purchase as of 2030.

The S7-400 series is not affected by this statement, as it continues to be supported by Siemens, and is NOT!

Discontinued.

Ram amount
The most important requirement for S7-300 and S7-400 PLCs is the available RAM. The amount of RAM needed

from the PLC-Frame is strongly dependent on the number of Control Modules that are used in the Application. To

reduce the Memory footprint of the PLC-Frame, one can simply reduce the amount of use Control Modules and

adjust them to fit the needs of the actual automation.

Memory Card
For the S7-300 platform from Siemens you always require a Memory card that you must consider in your project

engineering. The S7-300 platform from Vipa does not require any memory card.

BatchXpert Engineering 45/283

Simulation of PLC

While engineering, you will need to simulate the Program that you are writing for testing and debugging of your

Process logic. To simulate an Simatic PLC, exist different software solutions, that depend on the PLC series that

you are developing for. Of course, if it is possible, you can always simulate with a real plc, if this is available,

however since this is not the case in most cases, a software simulation PLC is recommended.

PLCSim
Siemens develops an Plc Simulation application, for its S7-300, 400, 1200 and 1500 series, that it calls “PLCSim”.

This application must be differentiated from “PLCSim Advanced”, which is an entirely different product, described

in detail below.

The "Normal PLCSim" has no network functionality whatsoever. It may appear that it has, but this is trick that the

Simatic infrastructure does. If you turn on PLCSim, you get the message that All PLC connection will only work

with PLCSim from now on, this is because Simatic enters an "PLCSim" mode from where it uses "Named Pipes" to

communicate with their integrated PLCSim. Simatic will show you an IP-Adress from the PLCSim but, it is never

used.

This means that only HMI systems that use the integrated Simatic Driver will ever be able to communicate with

PLCSim. No Intouch, Iltis, Botec, or any other HMI system can ever communicate with PLCSim via TCP/IP.

“PLCSim” can NOT be used for simulating PLC applications in BatchXpert.

S7-300/400 series
There are several Software PLC solutions that can be used with BatchXpert, that easily allow you to simulate a Plc

application on your computer. Usually these simulate one single PLC per computer, which means that you will

need to have multiple computers, or multiple virtual machines to be able to simulate multiple Plcs.

• IBH Softec: Simulation PLC

(www.ibhsoftec.com/epages/63444704.sf/en_GB/?ObjectPath=/Shops/63444704/Products/1302)

• ABC-IT: ABC X-CPU-4 w57 (www.abcit.de/en/abcprodukte/abc-x-cpu-4-w57/)

• NetToPlcSim: www.nettoplcsim.sourceforge.net/index.html

• Simatic WinAC

We recommend the “IBH Softec” solution, since this is a cost-effective simulation plc that works well with

BatchXpert and allows you to easily simulate all processes.

http://www.abcit.de/en/abcprodukte/abc-x-cpu-4-w57/
http://www.nettoplcsim.sourceforge.net/index.html

BatchXpert Engineering 46/283

S7-1500 Series
For simulation of S7-1500 series Plc, we recommend “PLCSim Advanced”, which is an

entirely different product to the “PLCSim” mentioned above. The “PLCSim Advanced”

allows you to simulate all aspects of an PLC, including networking functionality and

allows you to define a unique IP-address for each PLC instance. This also means that

you can run multiple PLC instances on one single computer.

For “PLCSimAdv” to be accessed via any network interface, you MUST change the

“Online Access” from “PLCSim” to “TCP/IP” in the Control panel. If you do not do this,

the PLC will only work as an “normal” PLCSim without any network functionality

whatsoever.

The IP Adress of the PLCSimAdv Instance is NOT the IP of your machine. It is the one

that you set when starting the machine, even if it is in a completely different network.

It is also very important that you enable “Simulation” for you project in the Project settings, so that the project

can be downloaded into “PLCSimAdv”. You do this by accessing the “Properties” of your project and activating the

“Support Simulation during Block Compilation” attribute, found in the “Protection” tab.

NOTE: YOU MUST OPEN THE PROPERTIES OF THE PROJECT, THE TOPMOST NODE IN THE TREE VIEW, NOT THE PROPERTIES OF

THE PLC.

After that, the plc can be used as if it were an “real” plc.

BatchXpert Engineering 47/283

S7-1200 series
Currently there is no Simulation for S7-1200 plc available the support network functionality. Since TIA Portal V18,

PLCSim includes support for the S7-1200 series, but not “PLCSim Advanced”, which means, that you cannot have

any external HMI connections to your Simulation plc.

Siemens “PLC Sim” for S7-1200

Siemens offers an “PLC Sim” for the S7-1200, however this application has some severe Problems, which make it

unsuitable for testing an BatchXpert, and any other application for that matter.

• PLC Sim for S7-1200 does NOT! Simulate PID controllers. If you call any of the “Technology” functions

such as PID controllers, you will not get an error, but the blocks does NOT get processed. The PID’s output

will always remain 0% no matter what your inputs are. PLC Sim does not process PID function blocks

• No Network functionality. It may seem that you can connect an HMI to the PLC Sim for S7-1200, however

this is not the case. Plc Sim for S7-1200 does NOT support any network functionality whatsoever. You can

NOT connect any HMI to this simulation PLC. Only WinCC does work on the same computer, due to

special handling by TIA Portal. You cannot connect any HMI, including BatchXpert, to this Simulation

PLC, even if installed on the same computer as PLC Sim.

• You can also not simulate any blocks that utilize Communication functions, such as Get, Put or Modbus

functions. These blocks get called, but do not get processed by “PLC Sim” for S7-1200.

Use a real plc for testing
Due to the low-cost nature of S7-1200 Plcs, you can use real plc for simulation purposes. However, keep in mind

that the S7-1200 has many hardware iterations, which makes it difficult to maintain compatible Plcs in stock for

testing.

Simulate with S7-1500 on “PLCSim Advanced”
Since about 98% of the code is compatible between S7-1200 and S7-1500, especially when programmed in

“Ladder”, you can convert the project to use an S7-1500 CPU, which then can be simulated with “PLC-Sim

Advanced”.

However, keep in mind that not all blocks and functions may be 100% compatible between the two series, and

some adjustments may be needed to be able to simulate with S7-1500. System functions form the Simatic library,

such as “Continuous regulator” blocks and communication blocks, are generally not compatible.

BatchXpert Engineering 48/283

Required PLC Hardware Configuration Settings

BatchXpert requires some specific settings to be adjusted in the Hardware configuration of the PLC. The specific

settings depend on the Type of PLC used and may be different between PLC series that is being used.

S7-300/400 series, and compatible
You must set the “Clock Memory” of the PLC to the Memory byte 880.

The “Local Data” should also be adjusted to at least 1024 for Priority Class 1, on PLC’s where this can be adjusted.

BatchXpert can run with less local memory, but generally this amount of memory is required.

BatchXpert Engineering 49/283

S7-1500 series
You must set the “Clock Memory” of the PLC to the Memory byte 880. All other settings can be set as needed by

your implementation.

Communication Load
Since The S7-1500 series is sufficiently fast to execute a typical BatchXpert application in generally less than 20

milliseconds, you should increase the Communication load to 50%, to make communications with the Controller

more responsive.

Webserver
The new generation of PLC’s integrate a Webserver which allows you to gather diagnostics data, create online

backups and other maintenance tasks. Some BatchXpert utilities, especially the Backup utilities, utilize this Web

server. It is thus recommended that you activate the Web Server. Please see Activate Web Server for more

information.

Connection Settings
The S7-1200 and S7-1500 PLC series require some settings to be adjusted and considered when setting up

communication with the BatchXpert system.

Please review Connecting to a S7-1500 or S7-1200 PLC for more information.

BatchXpert Engineering 50/283

PLC retentive data

Chapter we are going to talk about data remanence in the programming logic controller, but we are mostly

focusing on the current PLC generations, meaning the 1200 and 1500 series of PLCs. The older 300 and 400 series

PLC's have similar mechanisms, but we will not go into detail about these PLC series.

In this chapter we want to give an explanation about this type of data, the limitation of schematic PLC's, and

options to solve these limitations. We recommend you use “Using a Battery buffered Power supply”.

BatchXpert Engineering 51/283

What is Retentive data, remanence and Retain
Retentive data, remanence and retain data are all synonyms when talking about Simatic PLCs. Retentive data is

the data that remains in memory after power cycling PLC. Usually when a PLC is power cycled, it will set all data

blocks to their starting values, except data and data blocks that are explicitly marked as retentive.

This means that the controller basically resets its memory back to its starting values every time it is power cycled.

For machine parameters, recipe parameters and many other applications, this behavior is not desirable. Simatic

PLC's offer a separate memory area which can be used for certain data blocks, which retain their values even

through power cycles. This means that the data in these retain areas are simply kept even after power cycles and

are not reset to their starting values.

Retentive data in BatchXpert
Retentive data is extensively used in the BatchXpert control system. All adjustments for control modules such as

delay times, limit values and regulate the parameters of control modules, as well as unit statuses and downloaded

recipes need to be kept in retentive data regions in your PLC.

Otherwise, all your control module settings would reset to their starting values after you power cycle your PLC.

This basically means that BatchXpert cannot function properly without retentive data. The amount of retentive

data that you need for your project depends heavily on the amount of control modules and units that you are

using, but it's generally relatively high compared to simpler applications.

Retentive data in S71500 and S71200 series
The S7-1500 and S7-1200 series have comparatively little retentive memory integrated into their CPU’s. This PC

series also has a higher memory footprint overall and does consume generally more memory and also retentive

memory than the previous S7-300 and S7-400 series of PLCs.

This means that the retentive data area is a much more important feature of the CPU that must be considered

when selecting a PLC for your project. Even though they may have megabytes of data ram, only about 200 kb of

that is remanent, which for most applications is just not enough.

It is also important to note that your retentive data area cannot be extended on Simatic Controllers, not even by

using memory cards.

BatchXpert Engineering 52/283

Using Retain in your Project
For smaller projects, typical for S7-1200 series Plcs, it may be enough to simply use the existing retentive memory

areas off your PLC. In that case all you must do is activate the ”Retain” option in your data blocks of all your

control modules and units.

Please keep in mind that you must activate this option for all data blocks of all control modules and all unit data

blocks that you are using in your project. Blocks that do not have this activated will get reset after a power cycle.

In BatchXpert this option can only be activated for the whole data block, and not for only individual modules. This

basically means that you must mark all your control modules with “Retain”, which makes this option unsuitable

for medium and large projects, which generally have more control modules than would fit inside the retentive

data area of your PLC.

How much retentive data is required
The amount of required retentive data can be checked in your project on the left side of the project on the option

“program info”. This gives you a total overview of all memory areas that you are using in your PLC, including

retentive data.

Ilustración 1 Not enough Retentive data

BatchXpert Engineering 53/283

Using a Battery buffered Power supply
We recommend the use of the “Battery buffered Power supply” “6ES7505-0RB00-

0AB0”. This power supply converts all Data RAM into remanent Data ram, thus

eliminating the remanent data restriction of S7-1500 PLCs.

This power supply includes an internal battery which keeps the memory of your PLC

alive even while your power supply is powered off. This is essentially the equivalent

off the power supplies of the outgoing S7-400 series of PLC's, which used buffer

batteries to keep the memory of the controllers alive. You must also activate the

“Retain” option for all your Control module and Unit data blocks.

If you are using this type of power supply, please do not forget that you must activate certain options in your

parameters of your hardware configuration.

Ilustración 2 the Battery backed power supply in your Hardware configuration

Ilustración 3 You MUST select "No connection to supply voltage L+" to enable full memory retention

BatchXpert Engineering 54/283

Ilustración 4 All memory is now "Remanent"

Using the memory Card
As an Alternative you can use the “Persistence” functionality of BatchXpert, which utilizes the Memory card. This

results in considerable “Wear” on flash memory. The “Persistence” functionality is optimized for this but still

results in about “20-year lifetime” of the flash memory. The Persistence functionality will save modification at

most every 20 minutes, so the” Resolution” is limited to this interval.

A typical Simatic Memory Card will allow 500.000 writes per cell, which at most every 20 minutes will result in

about 20 years of Memory Card life.

For this option to work you must call “Bx Persist” at some point of your OB1 “Cycle_exc”. You can turn off the

“Retain” option for most data blocks, and only activate them for the most important blocks, since all data will be

stored to memory card after some time interval or changes have been made to the data.

BatchXpert Engineering 55/283

Details about “Bx Persist”
The BatchXpert persistence function is optimized to minimizing “write cycles” on your memory card. For this

BatchXpert listens to parameter changes from the user and then triggers a write to the memory card only if values

have changed after waiting for a few minutes. This means that the memory card is only written when some value

in any of the control modules or units have changed.

The memory card “write” conditions are as follows:

• If a Parameter is changed from the HMI, after 5 minutes the corresponding module is written

• All modules are written at least once each day.

This mechanism should result in at least 15 to 20 years of service life for your memory card.

Disadvantage of “Bx Persist”
When using “BatchXpert”, we always recommend that you use a battery backed

power supply. You should only use the “Bx Persist” function if no other option is

available.

Since “Bx Persist” rights data blocks on the memory card with their current

values, this means that these data blocks will appear as “Different” or “Changed”

when going online with your project. The reason for this is that you are

technically changing the data block starting values on your memory card which

then do not match the starting values that are stored in your project anymore.

To resolve this situation, you should then always upload the data blocks from the

controller which contain the current starting values that correspond to the last

values that have been saved to the memory card.

“Keep Actual Values”
The S7-1500 PLC's, offer the option of “Keep Actual Values”. This is not a reference to data remanence but refers

to the option to be able to download a data block without resetting its current values. Even if you activate this

option for the data block will still get wiped when a power cycle happens. This option is just a programming

convenience feature, then you can use it for extending and modifying data-blocks.

BatchXpert Engineering 56/283

PLC Time Synchronization

The system time is very important on the Stations, since this is required for accurate Timestamping of all changed

data. The time synchronization between stations is usually done via NTP and you can find more information here

System Time.

However, the PLC must also have the same system as the BatchXpert stations. This means that you must

implement some time synchronization mechanism in your project. You can implement this mechanism in one or

two ways.

Time zones
Due to the mechanism that BatchXpert registers its historical data, the Time Zone of the PLC is not relevant, and

all-time stamps are always considered as local time of the operating stations. This is done to make the time

stamping in the PLC more robust, since most of the time, the PLC time zones are not adjusted by the

commissioning engineer or the Maintenance department.

Using the NTP server
Since the BatchXpert system already must implement a time synchronization mechanism so that all operating

station can synchronize their time between each other, usually you already have an NTP server installed on

usually the “Bx1” operating Station. You can find more information here System Time.

This means that you can set the PC to use this operating station as its NTP server so that the PC also connects to

the server and synchronizes its system time from it. This is the preferred way to implement time synchronization

to the PLC, since it uses standard mechanisms that are well understood by any IT personnel. However, keep in

mind that adjusting these settings in the PC requires you to download the hardware configuration which means

that you must restart your controller, which will affect your processes that are running.

The required settings in your PLC are shown below. The settings below correspond to the settings required for a

connection to the standard batch expert NTP server “NetTime” that is described in its own manual in detail.

You must select the Interface that is connected to the BatchXpert stations and set the IP address of the

BatchXpert stations that are running as NTP server, usually the “Bx1” station.

BatchXpert Engineering 57/283

Using the HMI Script
The BatchXpert PLC framework includes a mechanism to set the local module system time of your PLC from an

HMI application. The HMI application provides several scripts to automatically send the current time to the PLC

and request setting this time as system time on the controller. Usually this is only done by the user by clicking on

the PLC and manually adjusting the time of your controller.

However, you can automate this functionality and send a “adjust PLC Time” requests to the PLC every time your

HMI application starts up. This means that at least when your BatchXpert station starts up the current time will be

sent to the PLC and assumed synchronized with the BatchXpert.

To avoid multiple times synchronization requests to the PLC, you should only enable this automatic time

synchronization on one of the operating stations and only on the main HMI system. Usually, this time

synchronization is only done on the “BX1” operating station.

This script for current time to the controller is placed in the application start script so that it runs every time your

application starts up. Please refer to Application Start Script chapter about more details about the Application

start script.

If the script functions are not available, you can import them from the library. Please refer to The HMI Library.

BatchXpert Engineering 58/283

PLC Overview

BatchXpert uses an Operating system for a PLC which provides facilities and functions to be used in user

programs. This Operating system or “PLC Frame” depends on your specific PLC type and enables the system to

send recipes, record historical data, handle phases and steps and provides all the different Control Modules.

The PLC Program is structured as follows:

• FC 1-100: Fixed System Functions (Block Numbers Cannot Be Reassigned)

• DB1-100: Fixed system data, with no possibility of reassigning.

The rest of the functions and FB not mentioned are free for the use of the user (programmer). However, there are

many auxiliary functions that occupy the FC 400-600 range, but which can be redirected by the user, if necessary.

Requirements to the PLC
The BatchXpert system requires certain features of the PLC. The system mostly requires a lot of RAM to

be able to function. For more information, please refer to the system's "System Requirements" manual.

The program is compatible with the following PLC systems:

• Siemens Simatic S7-300 series

• Siemens Simatic S7-400 series

• Vipa Speed7 300 series

• Vipa Slio series

• Vipa Micro series, although in a limited capacity as it has little ram

• Siemens Simatic S7-1200 series, for smaller projects

• Siemens Simatic S7-1500 series

The Projects can be created in “Simatic Manager,” but also “Tia Portal” starting

from Version 16 are supported.

BatchXpert Engineering 59/283

Program Structure
The following shows the structure of the system's general calls.

The functions are colored according to the following categories:

• System functions, not modifiable

• Generated function from Project engineering tool. To not manually modify

• IO-related functions, Adjustable if required.

• User Modifiable Block

OB1 (CYCL_EXC)
FC10 (Bx SysTime)
FC1 (Bx SysBegin)

FC8 (Bx SysInit)
FC86 (Bx UnitProtSend)
FC50 (Bx RecLoader)
FC96 (Bx UnitPc)
FC94 (Bx UnitProgWin)
FC97 (Bx UnitStatusInfoWin)
FC7 (Bx ManuProtSend)
FC45 (Bx DiagDP)
FC502 (TransDIn System)

 FC512 (TransDIn User)
FC16 (Bx DIn)
FC503 (TransAIn System)

 FC512 (TransAIn User)
FC21 (Bx AIn)

FB101 (U001 config)
FC100 (Bx Unit)

 FC101 (U001 Phases)
FB102 (U002 config)

FC100 (Bx Unit)

 FC102 (U002 Phases)
FC2 (Bx SysEnd)

FC11 (Bx Act)
FC31 (Bx PID)
FC36 (Bx Msg)
FC39 (Bx Switch)
FC4 (Bx SVal)

 FC504 (TransPID System)

 FC514 (TransPID User)
FC501 (TransAct System)

 FC511 (TransAct User)
FC5 (Bx WinOrder)

User programs are programmed into the FB1xx and FC1xx of the sequences. IO-related blocks are generated by

the Engineering tool of the BatchXpert system.

BatchXpert Engineering 60/283

Control Modules
BatchXpert programs do never access any IO signal directly but do so by using an “Control Module.” A control

module abstracts these IO Modules with functionality accessible to the user programmer. Instead of “Activating

an Output” you send a signal to an “Actuator” control module to activate the output, if possible. These modules

all implement extended configuration, simulation, alarm condition and time delays, depending on the module.

They also implement a Symbol library for the HMI with functionality, configuration and so on.

The most important control modules are the “Actuator,” “Digital Input”, “Analog Input” and “PID Regulator”

modules, as they directly correspond to physical PLC OI modules.

However, not all Control modules correspond to physical IO of the PLC, but nevertheless provide useful

functionality to the user, such as the “Material Module,” the “Special Value”, and the “Counter” modules.

The Modules also provide signals, which describe their current state, and allow the programmer to write logic if

any state changes. These states depend on each module, but are:

• General Alarm

• Automatic Mode

• Signal

• Etc.

Each module of a Type has a unique “number” that identifies it in the PLC. For example, there might be “Act10”,

an “Ain3”, and so on. The names that correspond to each module are assigned in the database, usually by

importing an Taglist via the “Project engineering Tool.”

PLC communication Resources
Some important resource in a plc that is often overlooked are the communication resources it has. Each

connection from either an HMI station, plc-plc communications, BatchXpert or a programmer will consume one of

these resources. Different CPU types and different Communication processors will have different amounts of

available connections.

When connecting equipment to plc, you must keep this communication resource limitation in mind. Usually, the

amount of communication is 16 or even 32, but for some Communication processes may be as low as just 4

connections.

BatchXpert Engineering 61/283

Memory Reset (Factory Reset)
A "Memory Reset" of the PLC will delete all the data stored in the PLC's memory! This includes all

data, such as process logic and parameters. After a complete deletion, a subsequent download

of the program to the PLC is always necessary! For guidance on how to restore a PLC backup,

please read the manual "PLC Restore Manual".

It is NOT recommended to perform "Memory Reset" . Please note the following:

• All logic will be deleted until you download it back into the controller again. This means that there won't

be any logic at all running on the controller. There are no functionalities of any Valve or Motors, not even

Manual operations will be possible; No HMI will be able to connect, since the communication channel data

blocks will also be deleted.

• The parameters and settings of all control modules (such as regulators, valves, etc.) will be reset to the

values that they had at the time the backup was taken.

• When downloading a backup to the PLC, ALL data and processes are reset to the moment the backup was

made. This means that ALL sequences of ALL Processes lose their state and are reset, making it impossible

to continue with a process that was in progress!

• After loading, the statuses of the processes must be reset, when the corresponding recipes are started,

and the steps of the Units must be advanced to the corresponding Steps.

BatchXpert Engineering 62/283

The “Trans xx” blocks for IO signal transfer

Many control modules are meant to work as abstractions for the IO

level of an PLC, such as Actuators, Digital inputs, or Analog Inputs. This

means that there must be some code that links the IO points of the PLC

to the individual control modules.

This is what the “Transxx” blocks do. They assign the Inputs of the

configured feedback to the actuator modules and then copy the

“Output” signal of the actuators, to the corresponding Plc outputs. This

same happens similarly for all Control Modules.

Taglist
Usually, you assign the IO’s of the modules by editing the Taglist in Excel, import them into the database, and

then regenerate the “Trans IO” blocks, so they can be imported, compiled, and downloaded into the plc. This

means that fundamentally these blocks are being regenerated every time you have a change in any of the IO’s of

a module, or you must add a new module.

This Generation, Importing and downloading is fundamentally a manual process and does not happen

automatically.

Import, compile and download
The “Project Engineering” tool creates “STL” (or “AWL”) source files must be manually imported into your project

and then be compiled and downloaded into your controller. Usually, you can override the existing transfer blocks

with the ones created from the project engineering tool, however you are advised to check that the new and old

blocks are compatible.

If the blocks are not compatible you must manually combine the old and new blocks. Overwriting the existing

blocks is possible because you should never modify the ”System” transfer blocks but create all modifications that

you need in the corresponding “User” blocks. This way the generated code will never override manual

modifications.

Modifications in generated code
However, there are situations where the generated code must be adapted to work properly. However, since the

“Trans IO” blocks are automatically generated, you cannot modify then, since all your changes would be

overwritten the next time, somebody regenerates them. To avoid this problem, all “Trans IO” Blocks are

generated as pairs, of an “System” block and an “User” block. Both blocks are called by the BatchXpert plc frame

automatically, by first calling the “Trans IO System” block, which is the one you regenerate, and then the PLC will

execute the “Trans IO User” block, which allows you to overwrite whatever logics that was executed I the

“System” block or add your own custom IO Logic.

Since the “User” blocks are never generated automatically, every code that you write in them will never be

overwritten by any code generator. Also, since they are called immediately after the “System” blocks, you can

adjust all IO Transfer in them before the Control modules can process them. You can, for example:

• Send Outputs to entirely different outputs.

• Use different Inputs, or no inputs at all.

BatchXpert Engineering 63/283

• Create any custom logic that is required, for example implement simulations, pulses, or even

communications with external equipment.

The “Trans IO User” block is where your customized IO to control module transfer logic goes.

Special Considerations for Analog Modules
Analog Input and Output modules, which correspond to Analog Input and PID Regulator Control modules,

sometimes have special considerations to adjust their scaling. These special settings are described in the Chapter

describing the Control module itself. Please refer to the Analog Input Scaling and PID Regulator Output Scaling

chapters for more information.

BatchXpert Engineering 64/283

TIA-Portal

While the older SIMATIC Manger is still relevant for existing projects, all newer projects should be created using

its successor “TIA-Portal”, since support for Simatic Manager will not be available much longer (as of 2025).

In general, we recommend that you use the following setting when working with TIA-Portal since most code

generation is designed around these settings.

Use Hierarchical Data block comments
You should activate the “Tag information with hierarchical comments” in your “General-View” settings. The

BatchXpert Engineering tool generates Control module data blocks, by using UDT (user defined datatypes), that

have modules symbols and comment in their comment field.

What this setting does is, in your code editor, it shows you the comment of the variable from the control modules

UDT first, and then appends the comment for its parents, which contain the symbol and comment of the

corresponding control module.

This way you can always view the control modules comments in your code, greatly improving code readability.

Import Symbols always “By Adress”
When importing symbols generated from the Project Engineering tool, you should always import “By Address” so

that changed symbol names do not result in duplicate addresses, but rather in updated information. This is the

way the older “Simatic Manager” import functionality worked.

BatchXpert Engineering 65/283

Importing and compilation of Generated block sources
In order to use the generative blocks from the project engineering tool, you first have to add a new external

source file into your external source files for your project. You do that by right clicking on the external Swiss files

and then selecting all your generated code files from the appropriate engineering directory.

after you have imported all your source files you can mark all of them and right click to “Generate Blocks from

sources”, which starts the compilation of all your blocks and will overwrite existing blocks in your project with the

newly generated ones.

Keep in mind that this may also mean that you must download modified code and data blocks.

BatchXpert Engineering 66/283

Control module data-blocks
When compiling control module data blocks, the existing data block of the corresponding control module will be

completely overwritten by the newly generated 1 which contains the new control modules that you may have

added, removed or modified. However, since this is a new data block it will need to be downloaded into your PLC,

which means that all current control module data will be overwritten by default values stored in your newly

generated data block.

This is a problem that always exists when downloading data blocks into a PLC, and it's not easily solvable. You can

use tools such as “S7-Backup” to make backups of your values that you can later then restore into your PLC,

however this is a manual process, which cannot easily be automated.

Generally, it is preferable that you add new modules manually into your control module data block by using

features that already exist in TIA-Portal.

https://docu.mlogics-automation.com/s7-backup/

BatchXpert Engineering 67/283

TIA Portal: Recommended way to modify Control module

data blocks

Because of the problems that I mentioned above, it is generally not a trivial task to overrides an already existing

and deployed control model data block by compiling and source into a new data block. However, the portal

provides functionality that more easily allows you to modify and even extend already existing data blocks, without

overwriting the current control module's configuration with default values.

The first thing to note is that you should never compile an already existing data block, since this will override the

existing data block, and requires a download with default values into your PLC.

Summary
you take a snapshot of your current control module startup block, assign these snapshot values as starting values

on your control module data block.

Then you change the name of the newly generated data block in the source file, compile it into a temporary new

data block, from which you can copy all your modified control modules into your existing control module data

block.

After that you can download your modified control module startup block without losing your current settings of

all your control modules contained in this data block.

1. Open the data block source file
Right click on the corresponding source and click open. This will open the text editor so that you can edit the

corresponding source file.

2. Change the Blocks symbolic name
Then change the data blocks symbolic name for example append running number to it. This means that if you

compile this data block, it will generate a completely new data block without overwriting the existing one. This

means that you can then manually handle new control modules by copying them into your existing data block.

BatchXpert Engineering 68/283

3. “Snapshot” current values of your existing control module data block
You can then open your existing data block, go online and create “Snapshot” of all current values of your data

block, which you then assign as “Starting Values”. This way if you download the data block the control module will

start up with the currently up to date values.

4. Manually copy new or updates modules
You can then open your newly generated data block, which will have a new name and copy new or modified

modules manually into your existing control modules data block.

5. Delete newly generated data block
Since you have already copied all new control modules from the newly generated data block into your actual

control module startup block, you don't need the temporarily generated data block anymore, and you can delete

it from your project.

6. Download Modified Control module data block
After that you can download the modified control module data block. This will of course override all current value

stored in the data block with the values stored in your “offline” data block, but since you uploaded and snapshot

and assigned this snapshot as starting values, the data block essentially starts up with the snapshot values that

you took as starting values. This basically means that you have reset your data block to the point in time where

you took your snapshot values, which should only be one or two minutes in the past, end user usually has no

effect on the control modules.

BatchXpert Engineering 69/283

Global Signals and Symbols

The BatchXpert system provides the following signals for use in the user's program. All signals presented are

"READ ONLY" and should not be written by the user. The following Signals are global and can be used throughout

the program in any user block.

General PLC status
These signals give you information and commands about the global status of the PLC and some global command

you can trigger from your code.

Symbol Address Data type Description
PLCRestart M 878.0 BOOL PLC restart (Stop => Run)

Will be TRUE for one cycle wafter restarting the PLC. It allows
you to detect restarts, for example to preset the “Emergency
Stop” alarm to activated, so that every restart, by default the
Estop needs to be confirmed.

PLCRunning M 878.1 BOOL PLC Running after restart.
After the first cycle of the plc, this will become TRUE and
remain so until you stop the plc

ToDo_Read M 878.2 BOOL To Do - read signal.
This is an “Marker” signal, with which you can mark sections
of code and then later find it by doing an “Cross Reference”
search for this signal.

ToDo_Write M 878.3 BOOL To Do - set signal.
This is an “Marker” signal, with which you can mark sections
of code and then later find it by doing an “Cross Reference”
search for this signal.

SimTest M 878.4 BOOL Only simulation test must be "0" in production mode.
For deployed projects, this signal should remain “False.” But
you can deactivate certain Estop alarms, and other safety
related things when you are running in simulation.

QuittAll M 878.7 BOOL reset all alarms.
If set to TRUE it will confirm all alarms in the PLC. Will be
reset automatically.

BatchXpert Engineering 70/283

Timers and Clock signals
• Clocks are periodic signals that have a periodic on and off time. For example, the “Clk10” will stay ½

second TRUE, and ½ second FALSE. These signals are used for different “flashing” rates for illuminated

buttes etc.

• Clock edge signals turn on for just one Plc cycle after their time expired. They are a convenient way to

count time or perform calculation ever xxx time. For example, the “Clk1E” will be true for one cycle every

1 second.

• Clock cycle edge signals are like the “Clock Edge” signals but operate on PLC cycles instead of time. So, the

“clk16CE” will become TRUE every 16 plc cycles.

Symbol Address Data type Description
Clk2CE M 879.0 BOOL clock 2 cycle (edge)
Clk4CE M 879.1 BOOL clock 4 cycle (edge)
Clk8CE M 879.2 BOOL clock 8 cycle (edge)
Clk16CE M 879.3 BOOL clock 16 cycle (edge)
Clk32CE M 879.4 BOOL clock 32 cycle (edge)
Clk64CE M 879.5 BOOL clock 64 cycle (edge)
Clk128CE M 879.6 BOOL clock 128 cycle (edge)
Clk256CE M 879.7 BOOL clock 256 cycle (edge)
Clk01 M 880.0 BOOL clock 0,1 sec (10 Hz)
Clk02 M 880.1 BOOL clock 0,2 sec (5 Hz)
Clk04 M 880.2 BOOL clock 0,4 sec (2,5 Hz)
Clk05 M 880.3 BOOL clock 0,5 sec (2 Hz)
Clk08 M 880.4 BOOL clock 0,8 sec (1,25 Hz)
Clk10 M 880.5 BOOL clock 1,0 sec (1 Hz)
Clk16 M 880.6 BOOL clock 1,6 sec (0,625 Hz)
Clk20 M 880.7 BOOL clock 2 sec (0,5 Hz)
Clk1E M 881.0 BOOL 1 second (edge)
Clk1E1 M 881.1 BOOL 1 second (edge), 1 cycle later
Clk1E2 M 881.2 BOOL 1 second (edge), 2 cycle later
Clk6E M 881.3 BOOL 6 second (edge)
Clk10E M 881.4 BOOL 10 second (edge)
Clk60E M 881.5 BOOL 60 seconds (=0.1-minute, edge)
Clk1DayE M 881.6 BOOL 1 day (edge)

BatchXpert Engineering 71/283

Time values
These values give you access to the currently passed cycle time of your OB1 execution and are used to easily build

your own counter, by summing up the value each cycle.

Symbol Address Data type Description
CycleCnt MB 879 BYTE cycle counter
CycleTimeSec MD 900 REAL Cycle Time in Seconds
CycleTimeMin MD 904 REAL time minutes
CycleTimeHour MD 908 REAL time hours
CycleTimeDay MD 912 REAL time days

//Count timer

L UxxD.User.TimerDelayMem //Accumulated Time

L CycleTimeSec //Current time in seconds: 0,012 = 12 msec

+R

T UxxD.User.TimerDelayMem //Save new sum to the accumulation

//Check timer

L UxxD.User.TimerDelayMem

L 30.0 //30 seconds

>R

SPBN TiDo

L 0.0

T UxxD.User.TimerDelayMem //Reset Accumulated Time to restart it

//Do something here

TiDo:

BatchXpert Engineering 72/283

General Structure of Control Module DBs

In the PLC, the data of control modules (actuator, PID, ...) is kept in Arrays, which may

also be “unrolled” into their individual elements, to be able to put individual comments

on them. It is only important that the internal structure of the objects is maintained. You

can generate these unrolled data blocks where each element has its own structure with

appropriate descriptions, taken from the control modules description in the database.

We recommend that you choose this option because it creates the most readable plc

code.

Execution of the Control Modules
In the BatchXpert plc framework, the control modules are executed by the system, without the need for user

intervention. There is no need for control modules functions to be called by the programmer in any of the user

function blocks. The PLC frame always executes all control modules that are present in the data blocks of all the

control module types.

You can modify the number of control modules of a type by reducing the number of modules contained in the

data block of this type.

Additionally, you can limit the maximum number of modules to be executed in the “Bx SysBegin” function by

adjusting the amount for each of the control module processing calls.

Data Structure
There is one data block for each control module type, which contains all the modules of this type. The data block

contains a list of structures of a control module type, where each element corresponds to a specific module,

ordered by their module number. This structure contains Commands, Status, and parameters as well as help

values of each module.

Commands
This section describes the data that functions as commands from the user's program to the BatchXpert system.

The signals described in this section can be written into the user's program with the corresponding restrictions for

each signal.

These signals are usually commands that activate the corresponding function in the control modules. Generally

(with a few exceptions), these are "Write only" signals.

All commands automatically reset each plc cycle, so as soon as you do not set them to TRUE, they reset

automatically. This is to ensure that no Command can ever become permanently activated by programmer error.

BatchXpert Engineering 73/283

Status
These are data and signals that the BatchXpert system provides for use in the user's program.

From these statuses, the user can obtain different information about the general status of the control modules.

Generally (with a few exceptions), these are "Read only" signs.

Parameters
These are configurations of the different control modules. Normally this configuration is done through the

"Faceplate" of the BatchXpert HMI systems. Normally, they are not written by the PLC.

However, for some signals there is the possibility of overwriting the values in the plc, so that the user cannot

change them in the control modules faceplates. This is not encouraged, as it runs contradictory to the BatchXpert

control module philosophy, where the user can manipulate these values. However, it may still be desirable for

safety relevant parameters, for example, reset simulations at emergency stop.

Alarms
In the plc many control modules can have an Alarm condition. This alarm condition is represented by the “Gal”

(General Alarm) status signal. This “Gal” signal stays true if the alarm condition is still present.

There is also the “Gals” (General Alarm Saved) signal. It activates at the same time as the Gal signal but stays

TRUE until reset by the operator either by “Acknowledge” on the specific Module, or by triggering a global

“Acknowledge All” by setting the “QuittAll M878.7” global signal.

How these Alarm conditions are evaluated, and the Gal signal is generated depends on the control module type

and includes a delay timer before the alarm is triggered.

Ignore
Most control modules also include an “Ignore” mode which can be activated by the Operator (Ign Parameter) and

means that the “Gal” and “Gals” signals are not set, even if the alarm condition of the control module is met.

Simulation
Most control modules also include an “Simulation” mode which can be activated by the Operator (Sim Parameter)

and means that the modules process value or signal is not connected to the Plc Inputs and outputs anymore but

can be defined from the operating interface. How this simulation mode is implemented depends on the specific

Control Module type.

External signals
Many control modules have signals that they must process that have to be supplied “externally,” meaning from

outside of the control module. These signals are marked with an “x” for “External” in their symbol name.

For example, the actuator needs to know its physical feedback status signals, which must be supplied by the user

program to the actuators. These signals are “xFba1” and “xFba2” which will get converted to “FbaOn” and

“FbaOff”. Since these latter two do not have the “x” in their symbol, they are statuses, not external signals.

BatchXpert Engineering 74/283

Actuators (Act)

Actuators are all elements that can be activated from the automation point of view. These may be Valves, Pumps,

or simple Lamp or other single digital outputs. They can have one Output, and optionally a closed and an open

Feedback. The actuator associated with the physical output is realized in the FC 501 "TransAct System" and the

“Transxx User”.

An Actuator may also be a purely virtual actuator, which has no real IO connections, neither output, nor feedback.

This is useful for example for Regulation values, Frequency converters etc. They usually do not have a digital

output, but rather a communication or and 4-20mA loop, but it is still useful to have a discrete Actuator to

activate and manipulate them.

General Principle
An actuator has one digital output and two digital inputs to represent the Feedback. Feedback is optional. It

constantly monitors feedback against the desired state, indicated by the output.

• If the Output is TRUE, the actuator is opening, but the ON feedback is not TRUE, it starts the alarm timer.

• If the output is FALSE, the actuator is closing, but the Off feedback is not TRUE, it starts the alarm timer.

• If both the On and Off feedback are TRUE, the alarm timer starts.

• If the Alarm Time expires, it activates an Alarm.

If the Feedback signals matches the expected state, the internal “On” and “Off” signals are activated, respectively.

These are the Control modules signals, which should be used in the user program to check if the actuator is in the

“Activated” or “Deactivated” state.

Simulation
If an Actuator is simulated, it will always generate the correct “On” and “Off” feedback signals for the modules.

This means that it will ignore the actual feedback signals connected to it, and always assume the correct state,

thus never generating any errors.

Ignore
The Ignore mode blocks the activation of the alarm condition “Gal” and “Gals” signals from activating. However,

the On and Off signals will remain connected to the connected feedback, although they will never generate any

error condition anymore.

For Actuators, you should prefer the “Simulation” mode, because “Ignore” may hide error conditions, without

simulating the Feedback signals.

Interlocks
Programming interlocks (also called Releases) for the actuators is one of the more complicated parts of writing a

BatchXpert application. You can find some examples here.

BatchXpert Engineering 75/283

Function diagram

BatchXpert Engineering 76/283

Structure
The Structure of this control modules is as follows.

Address Symbol Type Remark

0.0 ACo BOOL automatic control

0.1 ExCo BOOL extern control

0.2 SCS BOOL status check start

0.3 xFBa1 BOOL feedback 1

0.4 xFBa2 BOOL feedback 2

0.5 Rel BOOL release

0.6 Rel2 BOOL release 2

0.7 xAuto BOOL External automatic

1.0 ACoHM BOOL automatic control help memory

1.1 ExCoHM BOOL Extern control help memory

1.2 FBaOn BOOL feedback ON intern

1.3 FBaOff BOOL feedback OFF intern

1.4 FBaChange BOOL change extern feedback (0 FBa1=OFF FBa2=ON / 1 FBa1=ON FBa2=OFF)

1.5 FBa1Active BOOL feedback 1 active

1.6 FBa2Active BOOL feedback 2 active

1.7 xAutoHM BOOL extern automatic old

2.0 GAlQuitt BOOL general alarm acknowledges

2.1 Ign BOOL ignore alarm

2.2 Sim BOOL simulation

2.3 Auto BOOL automatic mode

2.4 MCo BOOL manual control

2.5 EmRel BOOL emergency release

2.6 InterlockGAl BOOL interlock by alarm

2.7 Maint BOOL maintenance

3.0 GAl BOOL general alarm

3.1 GAlS BOOL general alarm saves

3.2 SCE BOOL status check error

3.3 Mov BOOL Actuator is moving for visu

3.4 On BOOL actuator is ON

3.5 Off BOOL actuator is OFF

3.6 Out BOOL output

3.7 User BOOL free for user program

4.0 TOnVal REAL turn on delay value

8.0 TOnSp REAL turn on delay setpoint

12.0 TOfVal REAL turn off delay value

16.0 TOfSp REAL turn off delay setpoint

20.0 ADVal REAL alarm delay value

24.0 ADSp REAL alarm delay setpoint

28.0 TInterlock REAL time interlock before restart

32.0 SwCntVal DINT switch counter value

36.0 RunTimeVal DINT duty timer value (seconds)

BatchXpert Engineering 77/283

Commands
Symbol Remark

ACo Actuator control, only effective in Automatic

ExCo External control (e.g., by a switch), effective in automatic and manual. Production-
related interlocks are ignored. Safety interlocks are still considered.

SCS status check start

xFBa1 feedback 1

xFBa2 feedback 2

Rel release

Rel2 release 2

xAuto External automatic
This signal is usually connected to the “Run” status of its corresponding unit.

Status
Symbol Remark

FBaOn feedback ON intern

FBaOff feedback OFF intern

GAl general alarm

GAlS general alarm saves

SCE status check error

Mov actuator is moving

On actuator is ON

Off actuator is OFF

Out output

Parameters
Symbol Remark

FBaChange change extern feedback (0 FBa1=OFF FBa2=ON / 1 FBa1=ON FBa2=OFF)

FBa1Active feedback 1 active

FBa2Active feedback 2 active

GAlQuitt General Alarm Acknowledge

Ign ignore alarm

Sim simulation

Auto automatic mode

MCo manual control

EmRel emergency release

InterlockGAl interlock by alarm

Maint maintenance

TOnSp turn on delay setpoint

TOfSp turn off delay setpoint

ADSp alarm delay setpoint

TInterlock time interlock before restart

BatchXpert Engineering 78/283

Faceplate

Special Configurations
In addition to the system window of the actuators, the default parameter settings are made, there is a window

for the mouse parameterization. This determines what should happen when you click your mouse over the item.

In addition, in the mouse parameterization you can even set the Manual/automatic behavior generally:

• Automatic control by actuator. If you drive an actuator, it
is usually in automatic mode. Switching to manual mode is not
always possible when the actuator has a program effect. This
corresponds to the automatic philosophy of many programs in the
fermentation cellar.

• Automatic Edge Unit (RUN) is the only actuator mode in
Automatic. Disabled, the RUN flank can be activated manually at
any time.

• Auto Unit (RUN) sets the automatic mode of the actuator.
While the corresponding unit is on RUN it cannot be switched into
manual actuator mode.

• If one of these options is selected, the operator can
manually interrupt it at any time.

• Switching from manual mode to automatic mode is always
possible at any time.

BatchXpert Engineering 79/283

IO Assignment Behavior
If the “xFba1” or “xFba2” are not written to in any of the “Transfer IO blocks”, the internal status of the control

moule always assumes the correct internal status as to not generate an error. This means that if you have

actuators that for example do not have “On-Feedbacks”, you just must leave the “xFba1” signal “Floating”,

meaning never write to it. The Actuator module will then automatically assume a status as to not create an alarm

and your actuator module will always produce the correct “.On” signal for your Actuator. If you have an Actuator

module, that does not have any feedbacks, just do not write on neither “xFba1” nor “xFba2”.

Please keep in mind that each Actuator Module provides an “.On” and “.Off” signal, which should be used in your

applications. Please do not use “.xFba1” or “.Fba1” for any logic in your application and rather use the “.On” and

“.Off” signals.

It should be noted that the IO assignment of control modules is generally done by generating this code using the

“project engineering tools”. Please refer to The “Trans xx” blocks for IO signal transfer for more details

Actuator with ON and OFF feedback
//Send output to Output card

U "Act". Act[1]. Out //Signal to be activated the physical output

= A 0.0 //Physical Output

//Since we are writing a value to both “xFba1” and “xFba2”, both of them

//are active and the Module will consider both signals to generate the

//”On” and “OFF” signals of an actuator Module.

U E 0.0 //Actuator Feedback 1

= "Act". Act[1].xFBa1 //Turning on Feedback 1

U E 200.0 //Actuator Feedback 2

= "Act". Act[1].xFBa2 //Enable Feedback 2

Actuator with only ON and no OFF feedback
//Send output to Output card

U "Act". Act[1]. Out //Signal to be activated the physical output

= A 0.0 //Physical Output

//Since we are writing a value only to “xFba1” and never to “xFba2”,

//the module will always assume that the “Off”-Feedback is true when the

//Actuator Output is turned off. Meaning, it will always have the appropiate

//OFF-Feedback, according to the module status.

U E 0.0 //Actuator Feedback 1

= "Act". Act[1].xFBa1 //Turning on Feedback 1

Actuator with no feedback
//Send output to Output card

U "Act". Act[1]. Out //Signal to be activated the physical output

= A 0.0 //Physical Output

//Since we are writing neither “.xFba1” nor “.xFba2”,

//the module will always have the appropiate Feedbacks, according to the

//module status.

file:///M:/Projekte/BatchXpert/BatchXpert/Doku/Manuals/SDK/Trans_xx%23_The_

BatchXpert Engineering 80/283

Do NOT! Simulate Feedbacks like the following
//Send output to Output card

U "Act". Act[1]. Out //Signal to be activated the physical output

= A 0.0 //Physical Output

//Do not simulate the feedback, by writing the modules Out on the feedbacks.

//While this may work, you should prever to leave both signals “Floating” as

//described above.

U "Act". Act[1]. Out //Actuator Feedback 1

= "Act". Act[1].xFBa1 //Turning on Feedback 1

UN "Act". Act[1]. Out //Actuator Feedback 2

= "Act". Act[1].xFBa2 //Turning on Feedback 2

Programming Examples

Automatic Process Control
U "PH" //activated while in that step and in "Run" (or pause)

S "Act". Act[42]. Aco //Actuator 42 will be activated automatically.

S "Act". Act[44]. Aco //Actuator 44 will be activated automatically

Note: The “Aco” signals are automatically reset each plc cycle, so even if you use the “S” command instead of an

“=,” the signal will not remain “TRUE”. Using the “S” command makes using the “Aco” signal of actuators much

more versatile and easier, as they can be activated by multiple places at the same time without conflicting.

Assign Automatic mode!

U "RUN" //Process in "Run" mode

S "Act". Act[42].xAuto //Enable Actuator Automatic Mode 42

S "Act". Act[44].xAuto //Enable Actuator Auto Mode 44

External Control

U "Din". Deen[15].Sig //Safety switch

S "Act". Act[42].ExCo //Activates the actuator from an external control

Release

For more information about Interlocks and Releases, please refer to Actuator Interlocks

//Safety Release

U "Din". Deen[11].Sig //Manhole

U "Din". Deen[10].Sig //Emergency Stop

= "Act". Act[42].Rel //Conditional Safety Release

//Release by process

U "Act". Act[40]. Off //Valve 1 off

U "Act". Act[41]. Off //Valve 2 off

= "Act". Act[42]. Rel2 //Process-Conditioned Release

Alarm evaluation.
U "Act". Act[42].GAls //Actuator on alarm

S "HoldReq" //Maintains unity

Assignment for IO

For more information about IO assignments please refer to “IO Assignment Behavior”.
//Actuator 1

U "Act". Act[1]. Out //Signal to be activated the physical output

= A 0.0 //Physical Output

BatchXpert Engineering 81/283

U E 0.0 //Actuator Feedback 1

= "Act". Act[1].xFBa1 //Turning on Feedback 1

U E 200.0 //Actuator Feedback 2

= "Act". Act[1].xFBa2 //Enable Feedback 2

BatchXpert Engineering 82/283

Actuator Interlocks

The following describes some of the general interlocking and releasing of the Actuator Modules in common

process situation. However, there are also many specific interlocks, which for the sake of brevity are not all

described in this manual. The following section should be seen as a guide for implementing common interlocking

scenarios with actuator control modules.

Emergency Stop
If an emergency stop is activated all energized equipment related to the emergency stop must be turned off

immediately. This includes all pumps, valves and other energized equipment. In the programming you should use

the “.Rel” signal for this purpose, since this signal cannot be ”bridged” by the user from the faceplate of the

control module. Emergency stops should also be programmed using the “.Gals” signal from the emergency stop

digital input, since this signal only resets when the operator effectively acknowledges the alarm on the system.

A special case of emergency stops are vessel or equipment specific safety equipment, such as key switches or

manhole sensors on tanks. If one of these sensors is not in the correct state all equipment that is energized and

directly connected to the inside of the tank or can provoke dangerous situations on the connected machines,

must also be immediately shut off.

Pumps
Pump interlocks usually are one of the most complex interlocking scenarios, since they involve many different

components and alarm conditions. All process interlocks should be programmed using the “.Rel2” signal, since

this signal can be bridged from the faceplate by the user in the case the pump needs to be turned on even though

the usual process conditions are not met.

You should separate the interlocks into a suction side and pressure side monitoring where for each side of the

pump you can program all valves that have to be open for the pump to be able to run, without running against

closed valves. This way you can ensure that the pump can only turn on if and valid suction and invalid pressure

side way is opened for the pump.

If the pump includes a flow meter, you should also activate the low low alarm on this flow meter when the pump

turns on and use the flow meter as flow monitoring device. If deep flow meter analog input activates the low-low

alarm, the pump must stop since no flow is detected.

Another common interlock for pumps is the “dry run protection”. Sometimes pumps include dry run protection

sensors in the suction side of the pump, which of course should only allow the pump to run if liquid is present on

the suction side. If the pump is a transfer pump of a tank or a vessel, and this vessel includes an empty sensor

(LSL), you can use this empty sensor as try to run protection for the pump. Usually, you want to adjust about 20 to

30 seconds of alarm delay on either the dry run protection sensor or the empty level signal of the tank.

Full Signals (LSH)
If a tank or vessel includes and full signal (LSH), all valves and pumps must be blocked to avoid overfilling of that

tank on this. Depending on the situation and conditions sometimes along delays may be applied to these full level

signals. These full level signals usually are discrete digital level switches, or analog volume measurement devices.

On some vessels you may also have recirculation functionality, in which case you should not block recirculation if

the full level sensor detects maximum level.

BatchXpert Engineering 83/283

One other common functionality is that conductive full level sensors may not work during CIP processes, because

the CIP solutions may adhere to the sensor and give false full level signal readings. For this reason, usually during

CIP you should activate ignore on conductive full level switches or not use conductive full level switches in

equipment that may have contact with sodium hydroxide-based cleaning solutions. This problem mostly occurs

with sodium hydroxide since this cleaning agent is relatively sticky and very conductive, giving false conductivity

LSH sensor readings.

Dry Run Protection (LSL)
Another common interlock for pumps is the “dry run protection”. Sometimes pumps include dry run protection

sensor in the suction side of the pump, which of course should only allow the pump to run if liquid is present on

the suction side. If the pump is a transfer pump of a tank or a vessel, and this vessel includes an empty sensor

(LSL), you can use this empty sensor as try to run protection for the pump. Usually, you want to adjust about 20 to

30 seconds of alarm delay on either the dry run protection sensor or the empty level signal of the tank.

Maintenance Switches
Maintenance switches are interrupters installed near energized equipment such as pumps or motors and allow

the maintenance personnel to locally disconnect this type of equipment. Whenever possible you should include

feedback signals from these switches so that you can activate alarms and block the actuators from turning on.

Manholes and Key switches

Many tanks include equipment to detect if somebody might be inside the machine or tank, such as key switches

or manhole sensors on tanks. If one of these sensors is not in the correct state all equipment that is energized and

directly connected to the inside of the tank or can provoke dangerous situations on the connected machines,

must also be immediately shut off. Particularly agitators must be blocked immediately if the equipment detects

that some person might be operating inside the machine.

BatchXpert Engineering 84/283

Programming Examples

Safety Interlocks

Here we handle all Safety related Interlocks. Safety Interlocks cannot be "Bridged" by the user, and are meant to

reflect the interlocks for safety relevant equipment, or where Electrical interlocks exist in addition to the

software interlocks.

For Electrical interlocks, "Bridging" an Interlock would not allow the user to activate the Actuator, because it will

still be blocked by the safety circuit. To avoid confusion, we can mark them as "Safety Interlock"
//Here Are Actuator Interlocks, which depend on the Emergency Stop, but are not

//Connected directly to the interior of the Tank, so the "Vessel" safety does not

//Apply to them

 U #EmStop

 = "Bx Act D".Act[27].Rel

 = "Bx Act D".Act[556].Rel

 = "Bx Act D".Act[555].Rel

 = "Bx Act D".Act[432].Rel

 = "Bx Act D".Act[123].Rel

 = "Bx Act D".Act[334].Rel

//Here Are Actuator Interlocks, which are Connected directly

//to the interior of the Tank, so the "Vessel" safety does

//Apply to them

 U #EmStop

 U #VesselSafe

 = "Bx Act D".Act[28].Rel

 = "Bx Act D".Act[56].Rel

 = "Bx Act D".Act[55].Rel

 = "Bx Act D".Act[42].Rel

 = "Bx Act D".Act[13].Rel

 = "Bx Act D".Act[34].Rel

//Actutors that are not subject to any of the safety interlocks, come here.

//This however usually only applies to "Lamps", "Accoustic indicators" and such,

//And NEVER to Energized equipment such as Valves or Pumps.

//Energized equipment must always be interlocked by at least the Emergency Stop

 SET

 = "Bx Act D".Act[13].Rel

 = "Bx Act D".Act[34].Rel

BatchXpert Engineering 85/283

Simple Actuator Interlocks

In this example we look at simple Process interlocks.
//if a Digital input is in alarm, we block the actuators

 UN "Bx DIn D".DIn[20].GAlS //High temperature alarm

 = "Bx Act D".Act[27].Rel2 //Heating Valve

//An actuator needs another Actuator to be running first, for example a valve must

//Be open first

 U "Bx Act D".Act[27].On

 = "Bx Act D".Act[27].Rel2

//The actuator may never be active during CIP

 UN #CIP

 = "Bx Act D".Act[27].Rel2

More Simple Interlocks
NETWORK

TITLE = Act45 - dosing pump CaCl2 lauter tun

//This pump may only run when the signal is true and the actuator 125 is off

 U "Bx DIn D".DIn88.Sig;

 U "Bx Act D".Act125.Off;

 = "Bx Act D".Act45.Rel2;

NETWORK

TITLE = Act 112 - valve CIP return lauter tun

//this Valve may only open if the other one is closed

 U "Bx Act D".Act107.Off;

 = "Bx Act D".Act112.Rel2;

NETWORK

TITLE = Act124 inlet valve 1 lauter tun

//the inlet can only open if the tank is not full

 U #VesselSec;

 UN "Bx AIn D".AIn12.MHHA;

 = "Bx Act D".Act124.Rel2;

NETWORK

TITLE = Act127 - valve weak wort to weak wort tank

//There is no Interlock, it is always enabled

 SET ;

 = "Bx Act D".Act127.Rel2;

BatchXpert Engineering 86/283

Pump Actuator Interlocks

This is a more complex Pump interlocking example. Pump interlocks are the most "complex" interlocks, since they

involve a lot of components.

Pumps you want to include the following Interlocks/Releases:

• At least one Suction side Way open

• Ad least one Pressure side Way open

• If a flow meter is in line, activate the LLA alarm that flowmeter, when the pump runs, and then block the

pump if the alarm gets activated. This way you can add "Flow Monitoring" to the pump

• If you have Dry run Protection, you want that to be monitored as well

• If you have an LSL of a tank, you want that also
//Here we preset the signals, so we can later “S” them and avoid Parentheses and

complex AND/OR constructs

 CLR

 = #Suction;

 = #Pressure;

//Suction side

 U "Bx Act D".Act155.On;

 U "Bx Act D".Act156.Off //This vulve must be cloed

 = #Suction;

//Pressure to PRV

 U "Bx Act D".Act132.On;

 U "Bx Act D".Act143.On;

 U "Bx Act D".Act324.On;

 S #Pressure;

//Circulation

 U "Bx Act D".Act126.On;

 U "Bx Act D".Act324.On;

 S #Pressure;

//Weak Wort

 U "Bx Act D".Act127.On;

 U "Bx Act D".Act324.On;

 S #Pressure;

//General Release

 U #Pressure;

 U #Suction;

 UN "Bx AIn D".AIn84.GAlS; //Flow Monitoring

 UN "Bx DIn D".DIn84.GAlS; //Dry Run monitoring, either by a Dry Run switch, or the LSL of the Vessel

 = "Bx Act D".Act304.Rel2;

BatchXpert Engineering 87/283

Digital Inputs (DIn)

Digital Inputs are single input points, and used for signals like empty signals, full signals, or other button signals

from the process field. They can be on and off delayed, and alarm conditions can be set when the alarm should be

activated.

General Principle
A Digital input has one single input assigned to it.

• If the external signal becomes TRUE it starts the On-Delay timer and then activates the internal “Sig,”

which should be used in the user program.

• If the external signal becomes FALSE, the Off-Delay timer starts,

• If the “Eal0” (Enable alarm on FALSE) is TRUE and the Signal becomes FALSE, the Alarm delay time starts.

• If the “Eal1” (Enable alarm on TRUE) is TRUE and the Signal becomes TRUE, the Alarm delay time starts.

• If the Alarm Time expires, it activates an Alarm.

Simulation
If a Din is simulated, the current internal Signal state can be simulated by the user, and the field signal is

completely ignored.

BatchXpert Engineering 88/283

Structure
Address Symbol Type Remark

0.0 EA0 BOOL enable alarm by 0-signal

0.1 EA1 BOOL enable alarm by 1-signal

0.2 SCS0 BOOL status check alarm by 0-signal

0.3 SCS1 BOOL status check alarm by 1-signal

0.4 xSig BOOL signal extern

0.5 B29 BOOL spare

0.6 B30 BOOL spare

0.7 B31 BOOL spare

1.0 AlHM BOOL help memory for alarm

1.1 ImpHM BOOL help memory for impulse

1.2 xSigHM BOOL signal extern help memory

1.3 B19 BOOL spare

1.4 B20 BOOL spare

1.5 B21 BOOL spare

1.6 B22 BOOL spare

1.7 B23 BOOL spare

2.0 GAlQuitt BOOL general alarm acknowledges

2.1 Ign BOOL ignore alarm

2.2 Sim BOOL simulation

2.3 iEA0 BOOL intern alarm by 0

2.4 iEA1 BOOL intern alarm by 1

2.5 ImpProt BOOL write impulse flank to protocol

2.6 ImpNegProt BOOL write negative impulse flank to protocol

2.7 Switch BOOL convert as switch output

3.0 GAl BOOL general alarm

3.1 GAlS BOOL general alarm save

3.2 SCE BOOL status check error

3.3 Sig BOOL signal state

3.4 Imp BOOL impulse flank

3.5 ImpNeg BOOL negative impulse flank

3.6 B06 BOOL spare

3.7 User BOOL free for user

4.0 TOnDVal REAL turn on delay value

8.0 TOnDSp REAL turn on delay setpoint

12.0 TOfDVal REAL turn off delay value

16.0 TOfDSp REAL turn off delay setpoint

20.0 ADVal REAL alarm delay current value

24.0 ADSp REAL alarm delay setpoint

28.0 SwCntVal DINT switch counter value

Commands
Symbol Default Remark

EA0 0 enable alarm by 0-signal

EA1 0 enable alarm by 1-signal

SCS0 0 status check alarm by 0-signal

SCS1 0 status check alarm by 1-signal

xSig x signal extern

User x free for user

BatchXpert Engineering 89/283

Status
Symbol Remark

GAl general alarm

GAlS general alarm save

SCE status check error

Sig signal state

Imp impulse flank

ImpNeg negative impulse flank

Parameters
Symbol Remark

Ign ignore alarm

Sim Simulation

iEA0 intern alarm by 0

iEA1 intern alarm by 1

ImpProt write impulse flank to protocol

ImpNegProt write negative impulse flank to protocol

Switch convert as switch output

TOnDSp turn on delay setpoint

TOfDSp turn off delay setpoint

ADSp alarm delay setpoint

SwCntVal switch counter value

BatchXpert Engineering 90/283

Faceplate

Special Configurations
In addition to the system window for digital input for default parameter settings, there is a window for mouse

settings. This determines what should happen when you click the mouse over the item.

• The digital signal of the sensor can be simulated in case of

problems (non-process-critical signal, such as a transport sensor).

• Ignore alarms.

BatchXpert Engineering 91/283

Programming Examples

Signal Query

U "Din.Din[19].Sig" //Empty signal

S "PhaseEnd" //Finish Step

Alarm Assessment
U "Step0" //Unit is in “StartPosition”

S "DIn".DIn[18].EA0 //Activate Alarm Signal 0

U "DIn".DIn[18].GAlS //Alarm

S "HoldReq" //Stop the current Unit

Status check
U "PA" //Active Step

S "DIn".DIn[12].SCS0 //Status Error Triggered with Signal 0

UN "DIn".DIn[12].SCE //No Error Status

S "PhaseEnd" //Finish Step

DIn Assignment

It should be noted that the Iowa assignment of control modules is generally done by generating this code using

the project engineering tools. Please refer to The “Trans xx” blocks for IO signal transfer for more details
U E 400.0 //Physical Entry Address

= "DIn".DIn[1].xSig //Active Program DiN 1 Signal

U E 599.7 //Physical Entry Address

= "DIn".DIn[1600].xSig //Active Program Signal DIn 1600

file:///M:/Projekte/BatchXpert/BatchXpert/Doku/Manuals/SDK/Trans_xx%23_The_

BatchXpert Engineering 92/283

Analog Input (AIn)

An Analog input represents a single analog measurement. These are usually connected by a 4-20mA current loop,

0-10 V voltage signal, or by an RTD resistor bridge. The module supports Scaling of the input measurement signal

to the appropriate process signal and applying an “Polygon table” to the raw input value to perform complex

operations.

The Scaling operation can be disabled for values, which do not require this functionality.

General Principle
An Analog input has one single Analog input signal assigned to it.

• If the NPA (no Periphery Adaption) is FALSE, the normal Scaling is applied, and the result is transferred to

“PVal”

• If the NPA (no Periphery Adaption) is TRUE, the normal Scaling is applied not applied and the “xPVal” is

directly transferred to the “PVal”

• After the scaling is applied, a polygon is applied if one is selected.

• If the “PVal” is above or below the HHval or LLval limits, a Warning is activated.

• If the “PVal” is above or below the HHAval or LLAval limits, the alarm delay is started.

• If the Alarm Time expires, it activates an Alarm

The Analog input has several Limit signals that have Hysteresis applied to them. The hysteresis of the values

generates a "dead band" to prevent the corresponding signal from fluctuating too much. The hysteresis function

with all limit values and is always above and below the set value. If the process value becomes less than the value

set at the minus hysteresis limit, the corresponding limit signal is deactivated. The limit signal is lit again, if the

process value becomes more than the limit value plus hysteresis.

For example: If the limit value is set to 90 with a hysteresis of 30.

The Limit Signal is turned off when the process value is below 90 -30 = 60.

If the process value goes up again, the Limit Signal turns back on when the value reaches 90 + 30 = 120.

Simulation
If an AIn is simulated, the current internal Process Value can be simulated by the user, and the field signal is

completely ignored

Filters
There are three filters that can be applied to the Analog input. All three filters can be added simultaneously, as

they are additives. The filters are “Low Pass Filters” of different “Strength.” The higher the filter percentage, the

more they “smooth” out signals.

If you have very fluctuating signals, you can add these “Filters” until the signals are usable for your application.

Structure
Address Symbol Type Remark

0.0 ELLA BOOL enable low low alarm

0.1 EHHA BOOL enable high high alarm

0.2 xAl BOOL alarm from extern

0.3 NPA BOOL no periphery adaption

0.4 B28 BOOL spare

0.5 B29 BOOL spare

0.6 B30 BOOL spare

BatchXpert Engineering 93/283

0.7 B31 BOOL spare

1.0 MLLA BOOL low low alarm - alarm if enabled

1.1 MLL BOOL low low limit - warning if enabled

1.2 ML BOOL low limit

1.3 MSp BOOL setpoint

1.4 MH BOOL high limit

1.5 MHH BOOL high high limit - warning if enabled

1.6 MHHA BOOL high high alarm - alarm if enabled

1.7 MHWA BOOL alarm from hardware

2.0 GAlQuitt BOOL general alarm acknowledge

2.1 Ign BOOL ignore alarm

2.2 Sim BOOL simulation

2.3 iEHWA BOOL enable hardware alarm

2.4 iELLA BOOL enable LL alarm

2.5 iEHHA BOOL enable HH alarm

2.6 iELLW BOOL enable LL warning

2.7 iEHHW BOOL enable HH warning

3.0 GAl BOOL general alarm

3.1 GAlS BOOL general alarm saves

3.2 Warn BOOL general warning

3.3 Filter1 BOOL filter 1 on (75%)

3.4 Filter2 BOOL filter 2 on (88%)

3.5 Filter3 BOOL filter 3 on (94%)

3.6 ManuInp BOOL manual input (no periphery)

3.7 User BOOL memory free for user

4.0 PVal REAL process value

8.0 Sp REAL setpoint

12.0 LScal REAL low scaling

16.0 HScal REAL high scaling

20.0 LLAVal REAL low low alarm value

24.0 LLVal REAL low low value (warning limit)

28.0 LVal REAL low value

32.0 HVal REAL high value

36.0 HHVal REAL high high value (warning limit)

40.0 HHAVal REAL high high alarm value

44.0 LLAHys REAL low low alarm hysteresis

48.0 LLHys REAL low low hysteresis

52.0 LHys REAL low hysteresis

56.0 SpHys REAL setpoint hysteresis

60.0 HHys REAL high hysteresis

64.0 HHHys REAL high high hysteresis

68.0 HHAHys REAL high hgih alarm hysteresis

72.0 ADVal REAL alarm delay value

76.0 ADSp REAL alarm delay setpoint

80.0 PoTNo REAL positive = polygon table number / negative = offset

84.0 xPVal REAL raw value from extern

88.0 iPVal REAL process value intern (without polygon)

BatchXpert Engineering 94/283

Command
Symbol Default Remark

ELLA BOOL enable low low alarm

EHHA BOOL enable high high alarm

xAl BOOL alarm from extern

NPA BOOL no periphery adaption

User BOOL memory free for user

xPVal REAL raw value from extern

Status
Symbol Remark

MLLA low low alarm - alarm if enabled

MLL low low limit - warning if enabled

ML low limit

MSp setpoint

MH high limit

MHH high high limit - warning if enabled

MHHA high high alarm - alarm if enabled

MHWA alarm from hardware

GAl general alarm

GAlS general alarm save

Warn general warning

User memory free for user

PVal process value

Parameters
Symbol Remark

Ign ignore alarm

Sim simulation

iEHWA enable hardware alarm

iELLA enable LL alarm

iEHHA enable HH alarm

iELLW enable LL warning

iEHHW enable HH warning

Filter1 filter 1 on (75%)

Filter2 filter 2 on (88%)

Filter3 filter 3 on (94%)

ManuInp manual input (no periphery)

Sp setpoint

LScal low scaling

HScal high scaling

LLAVal low low alarm value

LLVal low low value (warning limit)

LVal low value

HVal high value

HHVal high high value (warning limit)

HHAVal high high alarm value

LLAHys low low alarm hysteresis

LLHys low low hysteresis

LHys low hysteresis

SpHys setpoint hysteresis

BatchXpert Engineering 95/283

HHys high hysteresis

HHHys high high hysteresis

HHAHys high hgih alarm hysteresis

ADSp alarm delay setpoint

PoTNo positive = polygon table number / negative = offset

BatchXpert Engineering 96/283

Faceplate

Special Configurations
In addition to the system window for analog input for default parameter settings, there is a window for mouse

settings. This determines what should happen when you click the mouse over the item.

In addition to the mouse parameterization, you can determine the overall scale of the inputs:

• Low Limit Hardware – Scale Division at 4 mA (0 mA)

• High Limit Hardware – Scale Division at 20 mA

• Hardware Alarm Low Limit – If the analog input falls below this
value, the wire break alarm is triggered.

• Hardware Limit Alarm High – If the analog input exceeds this
value, the overflow alarm is triggered.

BatchXpert Engineering 97/283

Programming Examples

Process Value Transfer

L "AIn".AIn[4].PVal //Temperature Measurement

T "U002".Para[12].Val //Unit Parameter 12

Alarm Assessment
U "Step0" //Current unit is in Start position

S "AIn".AIn[18].Ella //Activate the low low limit alarm

U "AIn".AIn[18].GAlS" //Alarm

S "HoldReq" //Maintains Unity

AIn Assignment

It should be noted that the Io assignment of control modules is generally done by generating this code using the

project engineering tools. Please refer to The “Trans xx” blocks for IO signal transfer and Analog Input Scaling for

more details.

file:///M:/Projekte/BatchXpert/BatchXpert/Doku/Manuals/SDK/Trans_xx%23_The_

BatchXpert Engineering 98/283

Analog Input Scaling

Analog Input control Modules can be assigned from different hardware sources which may have different Scaling

values, depending on the Type of Value you are supplying to the Analog Input Module.

Typical Analog input sources
Siemens S7 Analog IO 0 – 27648 correspond

to 0 – 100% (4-20mA,
0-10V, …)

Siemens uses its own Analog input format where all Analog
cards are represented by a 14-bit value, and the two upper
bits represent error conditions.

Other Analog IO 0-32767 correspond to
0 – 100% (4-20mA, 0-
10V, …)

Some Manufacturer use a different IO Scaling mechanism
where they use all 16-bit for its representation, at the cost of
not having bits available for error reporting.

Most notably “WAGO” IO does this.

PT100 0-1000 correspond to
0.0 – 100.0 °C

If you are using PT100 in two, three or four wire
configurations, most of the IO cards give back the current
Temperature reading as Integer with one decimal place.
So, you must divide by 10 to get the actual temperature
reading

Communication Profinet, ASI-Bus,
Modbus, etc.

Most of the time these sources already send a fully resolved
and scaled “REAL” value that does not need to be Scaled at
all, or you must apply custom scaling factors.

Anton Paar measurement devices are an example of this-

Setting Analog input type for Code Generation
BatchXpert allows you to select the type of IO that you want to read and scale according to the Analog inputs

parameters. In the “Batch Configurator” or the “Taglist” you can select the type of IO that should be generated for

this Analog Input.

This allows the “Project Engineering Tool” to generate an “System Trans

Ain” block corresponding to the requirement of the Analog input.

BatchXpert Engineering 99/283

Examples of IO Transfer Code generated by “Project Engineering Tool”
It should be noted that the Io assignment of control modules is generally done by generating this code using the

project engineering tools. Please refer to The “Trans xx” blocks for IO signal transfer for more details

AIn IO-Card (0-27648)
L PEW 1024 //We charge the input process value

ITD ;

DTR ;

L 276.48; //Max Range 27648 for Siemens compatible sensors

/R; //Range 0 - 100 %

T "Bx AIn D".AIn[1].xPVal //we transfer to the process value of the Ain

AIn IO-Card Full Range (0-32767)
L PEW 1024 //We charge the input process value

ITD ;

DTR ;

L 327.67; //Max Range 32767 for Full integer range scaling

/R; //Range 0 - 100 %

T "Bx AIn D".AIn[1].xPVal //we transfer to the process value of the Ain

Ain PT 100 (Value/10)
//PT100: Periphery Value is Temperature with one Digit (1000 = 100.0°C)

L PEW 1024;

ITD ;

DTR ;

L 10.0:

/R

T "Bx AIn D".AIn[1].xPVal //we transfer to the process value of the Ain

set

S "Bx AIn D".AIn[1].NPA;

Ain from Communication Sources

Either the Project Engineering Tool or the Programmer can also use the “Per.xxx” functions to transfer Periphery

Values to analog inputs. The programmer would write these values in the “User Trans Ain” block.

//PT100: Periphery Value is Temperature with one Digit (1000 = 100.0°C)

CALL "Per.DP to AIn"

 Value :=PED1240

 AlarmOnNAN:=FALSE //if Input is NAN, it will be 0.0, without an alarm

 AIn := "Bx AIn D".AIn[1]

file:///M:/Projekte/BatchXpert/BatchXpert/Doku/Manuals/SDK/Trans_xx%23_The_

BatchXpert Engineering 100/283

Setting prior to BatchXpert 1.9
Prior to version 1.9 of BatchXpert, the Project Engineering tool did not allow for individual selection of IO types

per Analog input control module. There is an “Global” setting that defines the “Scaling Factor” which is set in

“OB1” of the PLC.

Figure 4 OB1

However, this changes the IO Scaling for all Analog Input modules globally for the whole PLC. This setting is still

available, but code generated by the Project Engineering Tool V1.9 or above does not use this setting anymore.

BatchXpert Engineering 101/283

NAN values
If you assign custom values or values coming from a communication source to an Analog input, you should make

sure that you do not write “NAN” or any other Invalid Real value onto the Analog Input. The reason for this is that

NAN cannot be compared against any other value and thus the “Analog Inputs” High- and Low-level indicators

“MHHA” and such do not work!

Because in Simatic S7 NAN values work as follows:

• NAN > 0.0 = FALSE

• NAN < 0.0 = False

• NAN == 0.0 = False

This means all comparisons against an NAN value will always be false, thus never activating either of the Limit

indicators of an Analog inputs.

NAN Values usually come from Communication sources, such as “Aton Paar” units, where NAN means, Unit

inactive, no Measurement Available.

But they can also come from Arithmetic operations, for example dividing by 0

L #SomeProcessValue

L #SomeSetting //May potentiall be 0.0 if the User inputs 0.0

/R

T #Result //If #SomeSetting happens to be 0.0, #Result will be “NAN”

You should use functions such as “Catch NAN” or “isNAN” to protect against that Possibility

 CALL "isNaN"

 Value :=#Value

 RET_VAL:=#isNan

 U #isNan

 U #AlarmOnNAN

 S #AIn.xAl

//Substitute NAN with a "known good Value", as to avoid errors further down the road

//NAN's can really screw things up. Things like this are possible!

//Value == 0 = FALSE, AND Value <> 0 = FALSE! it’s not Equal to Zero, but also similar to it!

//it messes up every comparison operator, and most of the "Trend Recording" software, so it may never

//Reach any SCADA system.

 UN #isNan

 BEB

 L 0.000000e+000 //Replacement value

 T #AIn.xPVal

BatchXpert Engineering 102/283

Custom Values
If you want to send custom values to an Analog input, for example and calculation or similar, you can do that in

the “User Trans AIn” function.

Differential Pressure Calculation
L "Bx AIn D".AIn[1].PVal //Pressure Below

L "Bx AIn D".AIn[2].PVal //Pressure Above

/R //Since Pressure Above may be 0.0 there is a chance of NAN

T #PotentialNANValue

CALL "Catch NAN"

 ValueIn := #PotentialNANValue

 Replacement := 0.0 //We define 0.0 if the result is NAN

 ValueOut := "Bx AIn D".AIn[1].xPVal

//Since we already did the conversion, we do not need Analog input Scaling

//we set the “No Periphery Adaption”

set

S "Bx AIn D".AIn[1].NPA;

BatchXpert Engineering 103/283

Polygon Tables

Polygon tables are used to convert a value that has a nonlinear dependency to another value. Effectively its

“traces” an arbitrary curve and uses the resulting polygon to transform one value to another.

Example premise
An easy example of this would be the

calculation of a Tank volume by means of

a pressure measurement device at the

bottom of the tank. This tank has a non-

cone shaped bottom, and on the inside

some device that reduces its volume. The

Pressure sensor measures the “Water

column” above the sensor, and thus

essentially measures the water level

height. But what we need is the actual

volume that is inside the tank. This means:

𝑉 = 𝑓(ℎ)

Given the height of the water level derived from the pressure senor reading, we want to calculate the actual

volume of the tank.

Of course, if we had a detailed mechanical construction plan, or even a CAD model, one could determine the

volume based on the filling height of the tank. For simpler constructions of tanks, this is straight forward by

calculating the volume of a cone and cylinder, but in our example the tank shape is too complex to calculate

efficiently. We need a simple solution that we can implement of 𝑓 in a PLC.

Example Polygon Table
Given the same “pressure to volume” curve in our

example above, we can create a list of points

where:

Y = that we measure

X = The Volume that we want

Then we can simply do a linear interpolation

between the two nearest Input points that lie above

and below our input value (in Green) and then

interpolate the output by the same amount.

This effectively gives us an approximation (red) of

our original line (blue), with which we can calculate

the Output (our Volume) from the input (our

pressure) by simply doing some linear interpolation.

Also, the more points we add to this “polygon,” the

more accurate our calculation will be.

BatchXpert Engineering 104/283

 Creating a Polygon Table
BatchXpert allows you to simply assign these tables for any Analog Input

Module by putting the number of the Polygon table to use in the appropriate

field of Analog input faceplate. Polygon tables do not need to be created in

the PLC, as an amount of 16 already exists by default. If more are needed, the

data block can simply be expanded to make room for more polygon tables.

The Polygon window allows you to create as many points as needed (up to 16

points) into a table where you define our “Input” and

corresponding “Output” values.

Example for Tank Levels
As an example, to create one of the Tables during

commissioning of your project.

Let us assume that you have a Tank or vessel, with a

Pressure sensor and a method to fill the tank with a

known volume of liquid, usually buy some kind of

flow meter or sometimes even by manual transfer (if the tanks are

small enough).

First, we recommend creating an Excel list, where you can note

your Pressure readings (your input) and our Flow meter totalizer readings (your output).

Now start with an empty tank. Fill an amount of liquid into the tank, so that you have some change in the

pressure sensor reading and stop the transfer. Note the pressure reading and the actual totalizer amount into you

excel table, then continue filling the tank, but periodically stop the transfer and recording the pressure and actual

totalizer amounts.

Take your measurement about every 10% of the level of the tank, or when some “significant” filling level has been

reached, for example when the level reaches the cylindrical part of a tank. After that you should end up with a

table like this one:

Input (Pressure) Output (Volume from Totalizer)

0 mbar 0 liters
10 mbar 324 liters

14 mbar 602 liters

20 mbar 1503 liters

46 mbar 4359 liters

63 mbar 6358 liters

78 mbar 7920 liters

This is precisely the table that you must put into the Faceplate of the polygon table.

BatchXpert Engineering 105/283

PID Regulator (PID)

An analog output (or PID Regulator) represents all equipment that can be controlled with an analog output signal.

This module also implements the full operation of a PID regulator, with all its settings and limit values. If the

operation of a regulator is not required, the operation of the regulator can be disabled, and the analog output can

be operated directly as a value to an external computer. This module is used for all types of regulations, such as

regulating valves, flow regulations, etc. It is also used directly, without regulation, such as nominal values to

variable frequency drives, or other equipment.

General Principle
This table sets all the parameters required for the PID algorithm.

• The "Control Reverse" function indicates in which direction the PID algorithm acts.

• The Proportional, Integral, and Differential values indicate the basic parameters of the regulation algorithm.

These values directly affect the behavior of the regulator and should only be adjusted by regulatory experts.

For more information, please review the "http://en.wikipedia.org/wiki/PID_controller" articles on PID control.

• "Banda Muerte". This sets a dimming range where the regulator does not change its output value.

• "Output Rampa". This value limits the modification of the output to a value in %/sec. If the slider modifies its

output value faster than this value, the algorithm limits this and only modifies the output with the maximum

ramp set. This value can be used for valves or pumps, to avoid damage from abrupt regulation. With the value

0.0, the ramp is disabled and allows instant changes of the output.

Alarms
Alarm limits can be set for the controller. The "Check Delay" value indicates the length of time for which boundary

monitoring is delayed. This time starts when the regulator starts. In this way, a time can be set within which the

regulator must have regulated its process value.

In the first category, you can set the absolute limits, which the process value cannot exceed. When the process

value exceeds these values after the "Backlog Check" was met, the regulator generates a failure.

In addition, a hysteresis can be set, which indicates the maximum allowable deviation from the process value to

its nominal value. This value will only be activated when the "Checkup Delay" time has expired.

Like the hysteresis alarm, a hysteresis "Warning" can be triggered. The operation is the same, only it generates a

warning instead of an alarm.

Simulation
If a PID is simulated, the current internal Process Value can be simulated by the user, and the field signal is

completely ignored.

Structure
Address Symbol Type Remark

0.0 EAl BOOL Enable alarm

0.1 SCS BOOL status check start

0.2 MStC BOOL static output value

0.3 MStrt BOOL starting value

0.4 MOVMin BOOL output value min.

0.5 MOVMax BOOL output value max.

0.6 OVOn BOOL output value on

0.7 B31 BOOL spare

1.0 B16 BOOL spare

http://en.wikipedia.org/wiki/PID_controller

BatchXpert Engineering 106/283

1.1 B17 BOOL spare

1.2 B18 BOOL spare

1.3 B19 BOOL spare

1.4 AlHM BOOL help memory for alarm

1.5 AHystHM BOOL help memory outside hysteresis

1.6 StrtHM BOOL help memory starting value active

1.7 Warn BOOL warning

2.0 GAlQuitt BOOL general alarm acknowledge

2.1 Ign BOOL ignore alarm

2.2 Sim BOOL simulation

2.3 MCOn BOOL mode controller on (0=off)

2.4 MSpExt BOOL mode setpoint extern (0=intern)

2.5 DisOut BOOL disable output periphery (0=enable)

2.6 EW BOOL enable warning

2.7 B15 BOOL spare

3.0 GAl BOOL general alarm

3.1 GAlS BOOL general alarm save

3.2 SCE BOOL status check error

3.3 Filter1 BOOL filter 1 on (75%)

3.4 Filter2 BOOL filter 2 on (88%)

3.5 Filter3 BOOL filter 3 on (94%)

3.6 CA BOOL control acting (1 = inverse)

3.7 User BOOL memory free for user

4.0 OVal REAL output value

8.0 Sp REAL setpoint

12.0 PVal REAL process value

16.0 xSp REAL setpoint extern

20.0 xPVal REAL process value from user program

24.0 LScal REAL low scaling

28.0 HScal REAL high scaling

32.0 OVMin REAL output value min.

36.0 OVMax REAL output value max.

40.0 StC REAL static output value %

44.0 Strt REAL starting value %

48.0 StrTVal REAL starting time value

52.0 StrTSp REAL starting time setpoint

56.0 LLAVal REAL low value for alarm

60.0 HHAVal REAL high value for alarm

64.0 AHys REAL hysteresis band for alarm

68.0 CheckDVal REAL check delay value

72.0 CheckDSp REAL check delay setpoint

76.0 ADHLVal REAL alarm delay high low limit value

80.0 ADHLSp REAL alarm delay high low limit setpoint

84.0 ADVal REAL alarm delay hysteresis value

88.0 ADSp REAL alarm delay hysteresis setpoint

92.0 WHys REAL hysteresis band for warning

96.0 WDVal REAL warning delay hysteresis value

100.0 WDSp REAL warning delay hysteresis setpoint

104.0 KP REAL proportional gain (unitless)

108.0 KI REAL integral gain (1/sec)

112.0 KD REAL derivative gain (sec)

116.0 RampV REAL ramp value for OVAL (per second)

120.0 DeadB REAL dead band for error

BatchXpert Engineering 107/283

124.0 Fuzzy1G REAL fuzzy 1 gain

128.0 Fuzzy1V REAL fuzzy 1 variable

132.0 Fuzzy1VOld REAL fuzzy 1 variable old

136.0 Fuzzy2G REAL fuzzy 1 gain

140.0 Fuzzy2V REAL fuzzy 1 variable

144.0 Fuzzy2VOld REAL fuzzy 1 variable old

148.0 iOVal REAL output value intern

152.0 E REAL control error

156.0 DPart REAL derivative part

Commands
Symbol Default Remark

EAl 0 Enable alarm

SCS 0 status check start

MStC 0 static output value

MStrt 0 starting value

MOVMin 0 output value min.

MOVMax 0 output value max.

OVOn 0 output value on

DisOut 0 disable output periphery (0=enable)

User x memory free for user

xSp x setpoint extern

xPVal x process value from user program

StC x static output value %

Fuzzy1V x fuzzy 1 variable

Fuzzy2V x fuzzy 2 variable

Status
Symbol Remark

GAl general alarm

GAlS general alarm save

SCE status check error

Parameters
Symbol Remark

Ign ignore alarm

Sim simulation

MCOn mode controller on (0=off)

MSpExt mode setpoint extern (0=intern)

DisOut disable output periphery (0=enable)

EW enable warning

Filter1 filter 1 on (75%)

Filter2 filter 2 on (88%)

Filter3 filter 3 on (94%)

CA control acting (1 = inverse)

OVal output value

Sp setpoint

PVal process value

LScal low scaling

HScal high scaling

OVMin output value min.

OVMax output value max.

BatchXpert Engineering 108/283

StC static output value %

Strt starting value %

StrTSp starting time setpoint

LLAVal low value for alarm

HHAVal high value for alarm

AHys hysteresis band for alarm

CheckDSp check delay setpoint

ADHLSp alarm delay high low limit setpoint

ADSp alarm delay hysteresis setpoint

WHys hysteresis band for warning

WDSp warning delay hysteresis setpoint

KP proportional gain (unitless)

KI integral gain (1/sec)

KD derivative gain (sec)

RampV ramp value for OVAL (per second)

DeadB dead band for error

Fuzzy1G fuzzy 1 gain

Fuzzy2G fuzzy 1 gain

Faceplate

Special Configurations
In addition to the system window for the PID for default parameter settings, there is the window for mouse

settings. This determines what should happen when you click the mouse over the item.

In addition to the mouse parameterization, you can determine the overall scale of the inputs:

• Output value 0% – dissipation on output card, 0% PID output

• Output value 100% – dissipation on output card, 100% PID output

BatchXpert Engineering 109/283

Programming Examples

Transfer of Values

L "Uxx". Para[12]. Val //Parameter Unit 12 – Temperature Measurement

L "PID". PID[4].xPVal //Process Value for PID

L "Uxx". Para[12]. Sp //Parameter Unit 12 – Temperature Measurement

L "PID". PID[4].xSp //Nominal value of the PID

Alarm Assessment
U "Act.Act[45].Out //Actuator Output

U "CIP" //CIP

S "PID". PID[4]. Eal //Enable Low Limit Alarm

U "PID". PID[4]. GAlS //Alarm

S "HoldReq" //Maintains Unity

Startup / Static Output of the PID
U "Act.Act[45]. Out //Actuator Output

U "CIP" //CIP

S "PID". PID[4]. MStC //Enable Static Output

U "Act.Act[45]. Out //Actuator Output

S "PID". PID[4]. MStrt //Start the PID

PID Assignment
//This code is usually created by “Project Engineering Tool” and resides in

//”Trans PID”

//The “OutFactor” depends on the type of Analog output card that you are using.

//for some cards may use values from 0 – 27648 (usually Siemens), others

//may use 0 – 32767 (Wago), so you should adjust the OutFactor accordingly

L "PID". PID[1]. Oval //PID output value 1

L #OutFactor //is 327.67

*R

RND

T PAW 1024 //Transfer the value to the physical output

L "PID". PID[480]. Oval //PID 480 output value

L #OutFactor //is 327.67

*R

RND

T PAW 1982 //Transfer the value to the physical output

BatchXpert Engineering 110/283

Parameter Example
Here we are going to list some “common” Parameter values that we recommend as starting values for tuning PID

Regulator. It must be noted that the following values are fundamentally empirical values and should only be used

as “Guidance”. All PID Regulators must always be “tuned” during startup of your project. This values, however,

serve as a good starting point for tuning these regulators.

Temperature Regulator for CIP Station

A Typical heat exchanger that regulates the temperature of an CIP prerun by means of a Steam modulating valve.

Process Value Range 0-110 °C

Typical Setpoint Range 60 – 80°C

Proportional Gain (KP) 3.0

Integral Gain (Ki) 0.3

Derivate Gain (Kd) 0.5

Regulator Startup Value 25%

Regulator Startup Time 5 seconds

Water Flow Regulation

A water flow regulation by means of constant pressure provided by a non-regulating pump and a Modulating

valve

Process Value Range 0-200 hl/h

Typical Setpoint Range 80 – 150 hl/h

Proportional Gain (KP) 1.0

Integral Gain (Ki) 0.1

Derivate Gain (Kd) 0.0

Regulator Startup Value 30%

Regulator Startup Time 5 seconds

Wort cooler Regulator

Wort temperature Control by means of a Glycol regulating valve and constant glycol pressure.

Process Value Range 0-100 °C

Typical Setpoint Range 10 °C

Proportional Gain (KP) 1.0

Integral Gain (Ki) 0.2

Derivate Gain (Kd) 0.0

Regulator Startup Value 25%

Regulator Startup Time 5 seconds

Fermenting Tank Temperature Regulator

Wort temperature Control in a fermenting tank by means of digital solenoid valves that are controlled by a two

step controller with a duty time of 100 seconds. Duty time means that the glycol valves will open and close once

for each 100 seconds.

Process Value Range -10-40 °C

Typical Setpoint Range 10 °C

Proportional Gain (KP) 1.0

Integral Gain (Ki) 0.03

Derivate Gain (Kd) 0.0

Regulator Startup Value 50%

Regulator Startup Time 5 seconds

BatchXpert Engineering 111/283

PID Regulator Output Scaling

PID Regulator control Modules can be assigned to different hardware destination which may have different

Scaling values, depending on the Type of Value you are supplying to the Analog Input module.

Typical Analog input sources
Siemens S7 Analog IO 0 – 27648 correspond

to 0 – 100% (4-20mA,
0-10V, …)

Siemens uses its own Analog input format where all Analog
cards are represented by a 14-bit value, and the two upper
bits represent error conditions.

Other Analog IO 0-32767 correspond to
0 – 100% (4-20mA, 0-
10V, …)

Some Manufacturer use a different IO Scaling mechanism
where they use all 16-bit for its representation, at the cost of
not having bits available for error reporting.

Most notably “WAGO” IO does this.

Communication Profinet, ASI-Bus,
Modbus, etc.

Most of the time these sources already send a fully resolved
and scaled “REAL” value that does not need to be Scaled at
all, or you must apply custom scaling factors.

Anton Paar measurement devices are an example of this-

Setting Analog input type for Code Generation
BatchXpert allows you to select the type of IO that you want to read and scale according to the Analog inputs

parameters. In the “Batch Configurator” or the “Taglist” you can select the type of IO that should be generated for

this Analog Input.

This allows the “Project Engineering Tool” to generate an “System Trans

Ain” block corresponding to the requirement of the Analog input.

BatchXpert Engineering 112/283

Examples of IO Transfer Code generated by “Project Engineering Tool”
It should be noted that the Io assignment of control modules is generally done by generating this code using the

project engineering tools. Please refer to The “Trans xx” blocks for IO signal transfer for more details

AIn IO-Card (0-27648)
 L “Bx PID D”.PID[1].Out //0 - 100

 L 2.764800e+002;

 *R ;

 RND ;

 T PAW 1024;

AIn IO-Card Full Range (0-32767)
 L “Bx PID D”.PID[1].Out //0 - 100

 L 3.276700e+002;

 *R ;

 RND ;

 T PAW 1024;

Custom IO Transfer
 L “Bx PID D”.PID[1].Out //0 - 100

 T #CustomDestination //Could be a Profinet, or internal destination

Setting prior to BatchXpert 1.9
Prior to version 1.9 of BatchXpert, the Project Engineering tool did not allow for individual selection of IO types

per Regulator. The Value was fixed for S7 Compatible modules to 0-27648.

file:///M:/Projekte/BatchXpert/BatchXpert/Doku/Manuals/SDK/Trans_xx%23_The_

BatchXpert Engineering 113/283

Counter Module (Cnt)

A counter represents a module that counts the pulses of a digital input. This module is used for (for example),

counting the quantity of a meter flow through a quantity pulse. This technique is often used for totalizing volumes

from flow meters. These send an impulse whenever a specific amount of volume has passed through the

flowmeter. By counting the impulse and multiplying them with an impulse value, you can totalize the amount

from such flowmeters.

General Principle
If the xSig value becomes TRUE, it will increment the “CVal” of the Counter value. The “PVal” is then calculated by

multiplying the “CVal” with the “ImpVal.”

Simulation
If a Cnt is simulated, the current internal Process Value can be simulated by the user, and the field signal is

completely ignored

Structure
Address Symbol Type Remark

0.0 EAImp BOOL enable impulse alarm

0.1 ELLA BOOL enable low low alarm

0.2 EHHA BOOL enable high high alarm

0.3 xAl BOOL alarm from extern

0.4 ResetBlock BOOL interlock counter reset

0.5 xSig BOOL impulse input

0.6 B30 BOOL spare

0.7 B31 BOOL spare

1.0 MLLA BOOL low low alarm - alarm if enabled

1.1 MLL BOOL low low limit - warning if enabled

1.2 ML BOOL low limit

1.3 MSp BOOL setpoint

1.4 MH BOOL high limit

1.5 MHH BOOL high high limit - warning if enabled

1.6 MHHA BOOL high high alarm - alarm if enabled

1.7 ImpHM BOOL impulse help memory

2.0 GAlQuitt BOOL general alarm acknowledge

2.1 Ign BOOL ignore alarm

2.2 Sim BOOL simulation

2.3 Reset BOOL reset counter

2.4 iELLA BOOL counting reserve

2.5 iEHHA BOOL enable HH alarm

2.6 iELLW BOOL enable LL warning

2.7 iEHHW BOOL enable HH warning

3.0 GAl BOOL general alarm

3.1 GAlS BOOL general alarm save

3.2 Warn BOOL general warning

3.3 Imp BOOL impulse flank

3.4 B04 BOOL spare

3.5 B05 BOOL spare

3.6 B06 BOOL spare

3.7 User BOOL memory free for user

BatchXpert Engineering 114/283

4.0 PVal REAL process value

8.0 Sp REAL setpoint

12.0 LScal REAL low scaling

16.0 HScal REAL high scaling

20.0 LLAVal REAL low low alarm value

24.0 LLVal REAL low low value (warning limit)

28.0 LVal REAL low value

32.0 HVal REAL high value

36.0 HHVal REAL high high value (warning limit)

40.0 HHAVal REAL high high alarm value

44.0 ADVal REAL alarm delay value

48.0 ADSp REAL alarm delay setpoint

52.0 ImpVal REAL value per impulse

56.0 CVal DINT counter value

Commands
Symbol Remark

EAImp enable impulse alarm

ELLA enable low low alarm

EHHA enable high high alarm

xAl alarm from extern

ResetBlock interlock counter reset

xSig impulse input

User memory free for user

Status
Symbol Remark

MLLA low low alarm - alarm if enabled

MLL low low limit - warning if enabled

ML low limit

MSp setpoint

MH high limit

MHH high high limit - warning if enabled

MHHA high high alarm - alarm if enabled

GAl general alarm

GAlS general alarm save

Warn general warning

Imp impulse flank

PVal process value

Parameters
Symbol Remark

GAlQuitt general alarm acknowledge

Ign ignore alarm

Sim simulation

Reset reset counter

iELLA counting reserve

iEHHA enable HH alarm

BatchXpert Engineering 115/283

iELLW enable LL warning

iEHHW enable HH warning

Sp setpoint

LScal low scaling

HScal high scaling

LLAVal low low alarm value

LLVal low low value (warning limit)

LVal low value

HVal high value

HHVal high high value (warning limit)

HHAVal high high alarm value

ADSp alarm delay setpoint

ImpVal value per impulse

Faceplate

Special Configurations
In addition to the system window for the counter for default

parameter settings, there is also a window for mouse settings. This

determines what should happen when you click the mouse over the

item.

BatchXpert Engineering 116/283

Programming Examples

Signal Transfer

U "Act". Act[18]. Out //Water Valve

U "DIn". Din[233]. Imp //Positive Ditital OneShot or Flank

= "Cnt". Cnt[4].xSig //External signal for the counter

Transfer of Values
L "Cnt". Cnt[4]. PVal //Water Meter

T "Uxx". Para[17]. Val //Unit Parameter 17

Alarm Evaluation
U "Act". Act[18]. Out //Water Valve

S "Cnt". Cnt[4]. EAImp //Enable Pulse Alarm

U "Cnt". Cnt[4]. GAlS" //Alarm

S "HoldReq" //Maintains Unity

BatchXpert Engineering 117/283

Message Module (Msg)

Since the other modules such as actuators, digital inputs, etc. already integrate messages, this message module is

very rarely used. It is only used to generate alarms or instructions for the operator that are not related to the

periphery.

General Principle

• If the external signal becomes TRUE it starts the On-Delay timer and then activates either an OpMsg or a

Gal, depending on the Parameters (if it is an Alarm or Operating Message)

• If the external signal becomes FALSE, the Off-Delay timer starts,

Structure
Address Symbol Type Remark

0.0 B24 BOOL spare

0.1 B25 BOOL spare

0.2 B26 BOOL spare

0.3 B27 BOOL spare

0.4 xAlarm BOOL signal extern for alarm condition

0.5 B29 BOOL spare

0.6 B30 BOOL spare

0.7 B31 BOOL spare

1.0 B16 BOOL spare

1.1 B17 BOOL spare

1.2 B18 BOOL spare

1.3 B19 BOOL spare

1.4 B20 BOOL spare

1.5 B21 BOOL spare

1.6 B22 BOOL spare

1.7 B23 BOOL spare

2.0 GAlQuitt BOOL general alarm acknowledge

2.1 Ign BOOL ignore alarm

2.2 Sim BOOL simulation

2.3 OPMsg BOOL operator message

2.4 B12 BOOL spare

2.5 B13 BOOL spare

2.6 B14 BOOL spare

2.7 B15 BOOL spare

3.0 GAl BOOL general alarm

3.1 GAlS BOOL general alarm save

3.2 OPMsgActive BOOL operator message active

3.3 AlarmMsgActive BOOL alarm message active

3.4 iAlarm BOOL Alarm active intern

3.5 B05 BOOL spare

3.6 B06 BOOL spare

3.7 User BOOL free for user

4.0 ADVal REAL alarm delay current value

8.0 ADSp REAL alarm delay setpoint

BatchXpert Engineering 118/283

Faceplate

Special Configurations
In addition to the system window for the counter for default parameter

settings, there is also a window for mouse settings. This determines what

should happen when you click the mouse over the item.

Programming Examples

Generate Message

U "Malzlaster Wartet" //Malta truck is waiting

= "Msg". Msg[12].xAlarm //External signal for the message

Alarm Assessment

U "Msg". Msg[12]. Gals //Active Message

S "SignalLamp" //Visual cue for the operator

BatchXpert Engineering 119/283

BatchXpert Engineering 120/283

Alarm Groups

Alarm groups allow You to group certain alarms together into logical

groups and then show and collective status for all control modules

belonging to this group. This is usually done to group all control

modules of a specific production area or a production unit together

to show an overall unit or production area status.

BatchXpert allows you to configure unit and control module

assignments in its batch configuration tools and then allows you to

generate alarm group function blocks that you can download into a

PLC to represent your configuration in the database.

Alarm groups are extensively used in the BatchXpert HMI menu

structure of the operating stations. In the default menu structure,

you can see and hierarchical few of all your production units and

areas and an alarm group symbol is shown next to them to

represent the current alarm simulation and process status of all

models that belong to this group, or subgroups thereof.

Executing the Alarm Groups
The project engineering tool generates a system function for calling all automatically generated alarm groups.

BatchXpert includes one alarm group per unit, where each alarm group contains all submodules that are assigned

to this unit in the batch configuration.

You should never manually change this file since your manual changes will be overwritten the next time a new

alarm configuration system function block is being generated.

Name Function Description
Bx Alarm Group System FC 570 Executing all Automatically Generated Alarm groups

Is being called from OB1
Bx Alarm Group User FC 571 Executing all custom alarm groups

Is being called from OB1
Bx Alarm Group D DB 550 Holds all Alarm groups data

Functions to Add Modules to Alarm Groups
Name Function Description
Bx Alarm Group FC 550 The Main Alarm Group function. Must be called exactly one for each

Alarm group
Bx Alarm Group Unit FC 551 Add a Unit to the alarm group to report its Process status
Bx Alarm Group Act FC 552 Add a Control Module to the Alarm group, to report its error,

simulation, and automatic status
Bx Alarm Group DIn FC 553 Add a Control Module to the Alarm group, to report its error,

simulation, and automatic status
Bx Alarm Group AIn FC 554 Add a Control Module to the Alarm group, to report its error,

simulation, and automatic status
Bx Alarm Group PID FC 555 Add a Control Module to the Alarm group, to report its error,

simulation, and automatic status

BatchXpert Engineering 121/283

Bx Alarm Group Cnt FC 556 Add a Control Module to the Alarm group, to report its error,
simulation, and automatic status

Bx Alarm Group Msg FC 557 Add a Control Module to the Alarm group, to report its error,
simulation, and automatic status

Bx Alarm Group Mat FC 558 Add a Control Module to the Alarm group, to report its error,
simulation, and automatic status

Bx Alarm Group FC FC 559 Add a Control Module to the Alarm group, to report its error,
simulation, and automatic status

Bx Alarm Group AlGroup FC 560 Add an Existing Alarm group to an Alarm Group, thus creating a
Hierarchy

Bx Alarm Group SideUnit FC 561 Add a Unit to the alarm group to report its Process status.
Side Units do not report the Production process, only if they are in
CIP. This should be used for units that may run for a long time but
should not mark the Alarm group as “Running a process”.
This may be the case for “Weak wort Tanks”, “Trub Tanks” etc.

Bx Alarm Group SideAlGro FC 562 Add an Existing Alarm group to an Alarm Group, thus creating a
Hierarchy
Side Alarm Groups do not report on the Production process, only if
they are in CIP. This should be used for units that may run for a long
time but should not mark the Alarm group as “Running a process”.
This may be the case for “Weak wort Tanks”, “Trub Tanks” etc.

Structure
Statuses of an alarm group always reflect a summary of all control modules contained in an alarm group. This

means if any one of the control modules assigned to an alarm group has a particular status, the status pit in the

alarm group will be set. If and command is set to true, the respective action is applied to all control models

assigned to an alarm group.

Address Symbol Type Remark

0.0 SCS Bool Command: Initiate a Status Check

0.1 Ign Bool ignore alarm

0.2 Sim Bool simulation

0.3 Auto Bool automatic mode

0.4 SetAuto Bool Command: Set to Automatic Mode

0.5 EmRel Bool emergency release

0.6 s2 Bool

0.7 Maint Bool maintenance

1.0 GAl Bool general alarm

1.1 GAlS Bool general alarm save

1.2 SCE Bool status check error

1.3 Warn Bool A warning is active

1.4 Msg Bool An Operating message is active

1.5 ProcRun Bool At least one unit, except side units, is running a
process

1.6 ProcProd Bool At least one unit, except side units, is running
production

1.7 ProcCIP Bool At least one unit, except side units, is running CIP

BatchXpert Engineering 122/283

Examples
For each alarm group you must call the main “Bx Alarm Group FC550” alarm group function once for each alarm

group that you want to create and then must call one of the alarm group functions to add unspecific module to an

alarm group.

The default alarm group data block that also contains all the default alarm groups for each units that are

generated by the project engineering tool, also contains space to add customized alarm groups.

FUNCTION " Bx Alarm Group User" : VOID
TITLE =Custom alarm Groups

VERSION : 0.1

NETWORK

TITLE =Custom Alarm Group

//Calling the Alarm groups main Funcion here

 CALL "Bx Alarm Group"

 AlGroup:="Bx Alarm Group D".AlGroupKS2 //this is our custom Alarm groups

//Trub Tank and Weak Wort Tank, should not report Process

 CALL "Bx Alarm Group SideAlGro"

 AlGroupVisu:="Bx Alarm Group D".Unit[15]

 AlGroup :="Bx Alarm Group D".AlGroupKS2

 CALL "Bx Alarm Group SideAlGro"

 AlGroupVisu:="Bx Alarm Group D".Unit[17]

 AlGroup :="Bx Alarm Group D".AlGroupKS2

//Add Untis Alarm Groups to this Alarm Group

 CALL "Bx Alarm Group AlGroup"

 AlGroupVisu:="Bx Alarm Group D".Unit[2]

 AlGroup :="Bx Alarm Group D".AlGroupKS2

 CALL "Bx Alarm Group AlGroup"

 AlGroupVisu:="Bx Alarm Group D".Unit[3]

 AlGroup :="Bx Alarm Group D".AlGroupKS2

//add other custom Control Modules

 CALL "Bx Alarm Group Act"

 ActVisu:="Bx Act Visu".Act0420

 AlGroup:="Bx Alarm Group D".AlGroupKS2

 CALL "Bx Alarm Group Act"

 ActVisu:="Bx Act Visu".Act0424

 AlGroup:="Bx Alarm Group D".AlGroupKS2

 CALL "Bx Alarm Group AIn"

 AInVisu:="Bx AIn Visu".AnI[63].Status

 AlGroup:="Bx Alarm Group D".AlGroupKS2

 CALL "Bx Alarm Group DIn"

 DInVisu:="Bx DIn Visu".SpI0059

 AlGroup:="Bx Alarm Group D".AlGroupKS2]

 CALL "Bx Alarm Group DIn"

 DInVisu:="Bx DIn Visu".SpI0060

 AlGroup:="Bx Alarm Group D".AlGroupKS2

 CALL "Bx Alarm Group PID"

 PIDVisu:="Bx PID Visu".PID[19].Status

 AlGroup:="Bx Alarm Group D".AlGroupKS2

END_FUNCTION

BatchXpert Engineering 123/283

Unit Assignments and Automatically generated Alarm Groups
For alarm groups to be generated automatically by the project engineering tool, you must assign control modules

to their respective units. You can either assign them by filling out the unit assignment column in the tag list or by

using the “Batch configuration” tool (Generate Alarm Groups). This will create an alarm group system function

block that you can compile and download into your PLC.

Whenever you update any unit assignment you must recreate this alarm group function block and redownload

the compiled block into your controller.

Alarm group commands
Also implement some simple comments which allow you to control all control modules assigned to this alarm

group at the same time. You can for example set all control models of an alarm group into automatic mode, or

initiate a status check on them during the start check process phase (Phases every unit should implement).

Currently the following Commands are implemented:

SCS Initiate a Status check on all modules

SetAuto Try to set all control modules to automatic

BatchXpert Engineering 124/283

Software Switch (Switch)

To achieve simple and uniform operation, the Switch module (software switch) is integrated for the operator to

generate a signal to the PLC (independent of the other modules), the default switch most used would be the

button to "confirm alarm", confirm a manual operation or activate optional Process features. A software switch

can also be forced to set or forced to reset in the PLC and is then blocked from operating on the HMI.

Structure
Address Symbol Type Remark

0.0 Set BOOL set software switch

0.1 Reset BOOL reset software switch

0.2 B26 BOOL spare

0.3 B27 BOOL spare

0.4 B28 BOOL spare

0.5 B29 BOOL spare

0.6 B30 BOOL spare

0.7 B31 BOOL spare

1.0 B16 BOOL spare

1.1 B17 BOOL spare

1.2 B18 BOOL spare

1.3 B19 BOOL spare

1.4 B20 BOOL spare

1.5 B21 BOOL spare

1.6 B22 BOOL spare

1.7 B23 BOOL spare

2.0 B08 BOOL spare

2.1 B09 BOOL spare

2.2 B10 BOOL spare

2.3 B11 BOOL spare

2.4 B12 BOOL spare

2.5 B13 BOOL spare

2.6 B14 BOOL spare

2.7 B15 BOOL spare

3.0 B00 BOOL spare

3.1 B01 BOOL spare

3.2 B02 BOOL spare

3.3 Sig BOOL spare

3.4 B04 BOOL spare

3.5 B05 BOOL spare

3.6 B06 BOOL spare

3.7 User BOOL free for user

Programming Examples

Switch reset
A "RUN"

S "Switch". Switch[3]. Reset //Reset the switch to block operations

BatchXpert Engineering 125/283

Checking the status of the Switch
U "PH"

U "Switch". Switch[3].Sig //Confirmation of the operator "Manual Sugar Emptying"

S "Act". Act[42]. Aco //Mixer

Clock current Switch status, and do not allow the user to operate it
U Your condition here

U "Switch". Switch[3].Sig //Confirmation of the operator "Manual Sugar Emptying"

S "Switch". Switch[3].Set

U Your condition here

UN "Switch". Switch[3].Sig //Confirmation of the operator "Manual Sugar Emptying"

S "Switch". Switch[3].Reset

BatchXpert Engineering 126/283

Frequency Converters

Nowadays variable speed controllers for pumps and motors are common in industrial settings. Usually these are

implemented as “Variable Frequency Drives” or FConv for short. Frequency drives require a speed nominal value

in addition to the “Start” signals form a control system. Traditionally these Fconv have been connected via an

electrical 4-20mA loop, which should be implemented directly by using Analog Output (PID) modules. Nowadays

an increasing amount of Frequency drives implement a digital communication option that is usually are

connected either by Profibus, or by Profinet and implement the “ProfiDrive” protocol or implement proprietary

protocols from the drives manufacturer.

Unfortunately, there is not really an “standard” that all manufacturers follow for the implementation of a

communication interface with Frequency drives. There is “Profidrive”, but many manufacturers do not support

this protocol and implement their own proprietary protocol.

Since the implementation of these protocols can be vastly different, you must call a function specific to the

Frequency drive protocol you are using, for each of the connected frequency drives. This protocol specific

function implements the standard BatchXpert Fconv module and adapts it to the specific communication protocol

you are using.

General Principle of an FConv communication
Even though the communication protocols are different, and not compatible with each other, they follow the

general communication principle. They exchange the following kind of data:

• Status Word

• Control Word

• Alarm Word

• Speed Nominal

• Speed Current Value

• Other Current Values

These bits of information are packed together into “Messages” and exchanged with the frequency drive. The

biggest difference between the Protocols is how the Status, Control and Alarm words are encoded and the state

model that is implemented for the frequency drive. These are entirely dependent on the protocol in questions,

and most of the time are not compatible with other protocols at all.

BatchXpert Engineering 127/283

Communication protocols implemented by default in BatchXpert.

By default, BatchXpert implements the following Protocols, but newer types may be

added in the future or on request. You can find the Supported Frequency drives in the

corresponding folder of the BatchXpert library:

• ProfiDrive. Mostly used by Drives from “Siemens” or “ABB”, but many other

manufacturers support this protocol optionally by configuration in the Frequency

drive.

• Danfoss FC. This protocol is only available on frequency drives from “Danfoss”.

These also support ProfiDrive, but the default selection is set to “Danfoss FC”. It

implements a simpler control scheme than ProfiDrive and thus is easier to use.

This protocol is especially used in the FC300, FC200 and FC100 series. It is like

ProfiDrive.

• SEW MoviDrive. SEW implements a very minimal communication protocol with their “MoviDrive” series.

This also supports connection of up to 4 drives via an “DFE32B” adapter, which acts as a Profinet device

and communicates with up to 4 MoviDrives via an integrated serial interface.

Setting parameters on the Frequency Drives
Most Frequency drives require you to set certain parameters to make the communication protocol work. This

configuration depends completely on the device manufacturer, and you must consult the manufacturer’s manual

to check how and which settings to adjust.

BatchXpert usually mentions the settings for some of the common drives in the Header of the Frequency

Converter function blocks, where you should look for more information.

Common Parameters that you usually must adjust are. As stated above, this is entirely dependent on the

manufacturer, but usually the settings include the following:

• Select Communication protocol.

• Device Profibus ID or Profinet Name

• Control Source should be set to “Bus” or “Communication.”

• Reference Speed should be set to 0% = 0Hz and 100% = 50Hz (or 60Hz)

• “Free run” or “Inertia” should be set to “Bus” or “Ignored/Deactivated.”

• Current Values should be set to “Current Speed”, “Torque”, “Current” and “Power”, if available

https://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10320142
https://files.danfoss.com/download/Drives/doc_MG90U102.pdf
https://download.sew-eurodrive.com/download/pdf/11614307.pdf

BatchXpert Engineering 128/283

Settings for Sinamics G120 via Profidrive

Connect to Actuators
Since Frequency Drives usually need to be activated by an Actuator Control module, BatchXpert provides a helper

function to connect an Actuator to a Frequency drive and send the “out” signals of the Actuator to the Control

signal of the Frequency drive, and the feedback back to the Actuators.

A version for Reversible Frequency drives is also available, which internally manages all the interlocking and

feedback generation from and to the Actuators.

Implement your own Frequency Converter Protocol
If you have a frequency drive protocol that is not one of the communication protocols covered by the default

implementations, you must implement this protocol in a new function, specific to your frequency drive.

This implementation requires a great level of expertise and is not trivial to do. You should use one of the existing

functions as the starting point and work your way up from there. Details on the implementation of this

communication are not part of this manual, as it is not required for implementing BatchXpert projects.

Simulation
If the Frequency drive is simulated, it will never receive a communication error, always return the correct

feedback, and return the requested nominal speed as current speed.

BatchXpert Engineering 129/283

Faceplates
Each Frequency drive also includes its own customized faceplate that contains information tailored to the

frequency driver protocol you are using. Mostly the difference comes from the different status signals, command

signals and alarm message that a driver can send.

This Faceplate allows you to see details about the Status Word, Control Word and the Status/Alarm Code sent to

and received from the PLC.

BatchXpert Engineering 130/283

Programming Examples
Frequency drive with single actuator and Fixed Speed
TITLE = Act303 - raking machine

 U "Bx DIn D".DIn37.Sig;

 U "Bx DIn D".DIn38.Sig;

 U #VesselSec;

 = "Bx Act D".Act303.Rel2;

//This function connects the Actuator to the FConv and exchanges control signals

//and Feedbacks between the Actuator and the FConv

 CALL "Bx FC Actuator" (

 Act := "Bx Act D".Act303,

 FConv := "Bx FC D".FConv1);

NETWORK

TITLE =Frequency Converter Raking Machine

//Here the Nominal speed is set. In this example it is a fixed speed coming

//from a Parameter. But it may as well just be the output of a PID

 L "U005 data".Para[24].Sp;

 T "Bx FC D".FConv1.SPext;

//Here we call the function that exchanges data with the Frequency

//drive. In this example it is an SEW Movidrive

 CALL "Bx FC Sew MoviDrive" (

 PEW := 4000, //This is the Input PEW of the

 PAW := 4000, //Hardware Configuration

 Data := "Bx FC D".FConv1,

 Visu := "Bx FC Visu D".FConv[1]);

Regulating Pump
//Normal Actuator Release

 U #VesselSec

 UN "Bx DIn D".DIn120.GAlS

 = "Bx Act D".Act311.Rel2

//The setpoint is derived from the output of a PID Regulator

 L "Bx PID D".PID59.OVal

 T "Bx FC D".FConv8.SPext

 CALL "Bx FC Actuator"

 Act :="Bx Act D".Act311

 FConv:="Bx FC D".FConv8

 CALL "Bx FC Sew MoviDrive"

 PEW :=4084

 PAW :=4084

 Data:="Bx FC D".FConv8

 Visu:="Bx FC Visu D".FConv[8]

BatchXpert Engineering 131/283

Reversible Frequency Drive
 U #VesselSec

 UN "Bx DIn D".DIn120.GAlS

 = "Bx Act D".Act311.Rel2

 L "Bx PID D".PID59.OVal

 T "Bx FC D".FConv8.SPext

//if Act 311 is activated, it will run in “normal” direction

//if Act 312 is activated, it will run in “Reverse” direction

 CALL "Bx FC Actuator Reversabl"

 Act :="Bx Act D".Act311

 ActReverse:="Bx Act D".Act312

 FConv :="Bx FC D".FConv8

 CALL "Bx FC Sew MoviDrive"

 PEW :=4084

 PAW :=4084

 Data:="Bx FC D".FConv8

 Visu:="Bx FC Visu D".FConv[8]

BatchXpert Engineering 132/283

ProfiDrive Protocol : Status Word
HMI

Address
PLC

Address
Symbol Type Remark

8 0.0 SpeedOK BOOL Setpoint/actual value deviation within tolerance range
9 0.1 PControlRequested BOOL The automation system is requested to accept the
10 0.2 FaultSpeed BOOL Speed is greater than or equal to the corresponding
11 0.3 FaultOverload BOOL Comparison value for current, torque or power has been
12 0.4 HoldingBreakOpen BOOL Signal to open and close a motor holding brake.
13 0.5 FaultOvertemperature BOOL Alarm, motor overtemperature
14 0.6 CW BOOL Motor rotates Clockwise (True) or CounterClockwise (False)
15 0.7 FaultVLTOverload BOOL Alarm, converter thermal overload
0 1.0 ReadyToStart BOOL TRUE: Ready to Start. FALSE: Not Ready to start motor
1 1.1 On BOOL TRUE: Motor is Switched on and no Fault. FALSE: Motor not running or Error
2 1.2 Enabled BOOL Motor follows setpoint. See control word bits "On" and "Enable"
3 1.3 Fault BOOL The converter has a fault. Acknowledge fault using "AckFault"
4 1.4 On2 BOOL Confirmation of ON2 Command Signal. Coast down to standstill is not active.
5 1.5 On3 BOOL Confirmation of ON3 Command Signal. Quick stop is not active.
6 1.6 ClosingLockOutActive BOOL It is only possible to switch on the motor after an OFF1
7 1.7 Alarm BOOL Motor remains switched on; no acknowledgment is

ProfiDrive Protocol: Control Word
HMI

Address
PLC

Address
Symbol Type Remark

8 0.0 CW BOOL TRUE: Clockwise operation. FALSE: no function. (Specific to Drive)
9 0.1 CCW BOOL TRUE: CounterClockwise operation. FALSE: no function. (Specific to Drive)

10 0.2 DPControl BOOL TRUE: Profibus Control Active. FALSE: VLT Ignores DP commands
11 0.3 C11 BOOL Specific to Drive
12 0.4 C12 BOOL Specific to Drive
13 0.5 C13 BOOL Specific to Drive
14 0.6 C14 BOOL Specific to Drive
15 0.7 C15 BOOL Specific to Drive
0 1.0 On BOOL TRUE: Turn On Motor, if "Enabled". FALSE: Ramp down the motor and then switch off
1 1.1 On2 BOOL TRUE: Motor can be turned on. FALSE: Switch Off motor immediatly with Coast dow
2 1.2 On3 BOOL TRUE: Motor can be turned on. FALSE: "Quick Stop" Ramp down with time "OFF3"
3 1.3 Enable BOOL TRUE: Motor is released. FALSE: Immediatly switch off motor
4 1.4 RFGActive BOOL TRUE: Ramp down active (Operation Condition). FALSE: Ramp down deactivated
5 1.5 RFGEnable BOOL TRUE: Ramp down enabled (Operation Condition). FALSE: Ramp value is frozen
6 1.6 EnableSP BOOL TRUE: Motor Accelerates to Setpoint. FALSE: Ramp down the motor to standstill
7 1.7 AckFault BOOL FALSE -> TRUE: Acknowledge fault

ProfiDrive Protocol: Alarm Word
HMI

Address
PLC

Address
Symbol Type Remark

8 0.0 BOOL
9 0.1 BOOL
10 0.2 FaultSpeed BOOL Speed is greater than or equal to the corresponding
11 0.3 FaultOverload BOOL Comparison value for current, torque or power has been
12 0.4 BOOL
13 0.5 FaultOvertemperature BOOL Alarm, motor overtemperature
14 0.6 BOOL
15 0.7 FaultVLTOverload BOOL Alarm, converter thermal overload
0 1.0 BOOL
1 1.1 BOOL
2 1.2 BOOL
3 1.3 Fault BOOL The converter has a fault. Acknowledge fault using "AckFault"
4 1.4 BOOL
5 1.5 BOOL
6 1.6

BOOL

7 1.7 Alarm BOOL Motor remains switched on; no acknowledgment is

BatchXpert Engineering 133/283

SEW MoviDrive: Status Word
HMI

Address
PLC

Address
Symbol Type Remark

8 0.0 StatusOrFault0 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
9 0.1 StatusOrFault1 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
10 0.2 StatusOrFault2 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
11 0.3 StatusOrFault3 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
12 0.4 StatusOrFault4 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
13 0.5 StatusOrFault5 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
14 0.6 StatusOrFault6 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
15 0.7 StatusOrFault7 BOOL Either Fault code or Status Code denpending if FAULT is TRUE
0 1.0 On BOOL TRUE: Motor is Switched on and no Fault. FALSE: Motor not running or

Error
1 1.1 ReadyToStart BOOL TRUE: Ready to Start. FALSE: Not Ready to start motor
2 1.2 DPControlRequested BOOL The automation system is requested to accept the
3 1.3 RampSel BOOL Ramp generator Selection
4 1.4 ParamSetSel BOOL Parameter set selection
5 1.5 Fault BOOL The converter has a fault. Acknowledge fault using "AckFault"
6 1.6 LimitCW BOOL

7 1.7 LimitCCW BOOL

SEW MoviDrive: Control Word
HMI

Address
PLC

Address
Symbol Type Remark

8 0.0 Rev BOOL TRUE: CounterClockwise operation. FALSE: no function. (Specific to VLT)
9 0.1 Potentionmeter1 BOOL Potentionmeter control. Keep at FALSE
10 0.2 Potentionmeter2 BOOL Potentionmeter control. Keep at FALSE
11 0.3 LocalSP1 BOOL Binary coded. 0 = Bus SP, 1,2,3 Local Setpoints
12 0.4 LocalSP2 BOOL Binary coded. 0 = Bus SP, 1,2,3 Local Setpoints
13 0.5 SPSelection BOOL Unclear; Keep at FALSE
14 0.6 C14 BOOL

15 0.7 C15 BOOL

0 1.0 Inhibit BOOL TRUE: Motor is released. FALSE: Immediatly switch off motor
1 1.1 On2 BOOL TRUE: Motor can be turned on. FALSE: Switch Off motor immediatly with

Coast dow
2 1.2 On BOOL TRUE: Turn On Motor, if "Enabled". FALSE: Ramp down the motor and then

switch off
3 1.3 Hold BOOL TRUE: Hold Active; FALSE: no Hold
4 1.4 RampSel BOOL TRUE: Ramp 2; FALSE: Ramp 1
5 1.5 ParamSetSel BOOL TRUE: Param Set selection 2: FALSE: Param set selection 1
6 1.6 AckFault BOOL FALSE -> TRUE: Acknowledge faults
7 1.7 C8 BOOL

SEW MoviDrive: Alarm Word
The alarm word of SEW Movidrives is an Integer number indicating the current Alarm that is present in the drive.

It must be interpreted as an Integer, rather than a Bit Array.

The Status codes are:

• 0: Not ready

• 1: Controller Inhibit

• 2 : No Enable

• 3: Stand still, current Active, No enable

• 4: Enable

• 5: Factory Setting Active

The Alarm codes are dependent on the MovDrive Model and should be looked up in the corresponding Manual.

BatchXpert Engineering 134/283

Danfoss FC Protocol: Status Word
HMI Address PLC Address Symbol Type Remark

8 0.0 SpeedReference BOOL

9 0.1 BusControl BOOL

10 0.2 FreqLimitOK BOOL

11 0.3 InOperation BOOL

12 0.4 Stopped BOOL

13 0.5 VoltageError BOOL

14 0.6 TorqueError BOOL

15 0.7 TimerError BOOL

0 1.0 ControlReady BOOL

1 1.1 DriveReady BOOL

2 1.2 Enable BOOL

3 1.3 Trip BOOL

4 1.4 Error BOOL

5 1.5 Reserved BOOL

6 1.6 TripLock BOOL

7 1.7 Warning BOOL

Danfoss FC Protocol: Control Word
HMI Address PLC Address Symbol Type Remark

8 0.0 Jog1 BOOL

9 0.1 Ramp1or2 BOOL

10 0.2 DataValid BOOL

11 0.3 Relay01 BOOL

12 0.4 Relay04 BOOL

13 0.5 SelectionLSB BOOL

14 0.6 SelectionMSB BOOL

15 0.7 Reverse BOOL

0 1.0 RefValueLsb BOOL

1 1.1 RefValueMsb BOOL

2 1.2 DcBrake BOOL

3 1.3 enable BOOL

4 1.4 QuickStopOrRamp BOOL

5 1.5 HoldFreqOrRamp BOOL

6 1.6 Start BOOL

7 1.7 Reset BOOL

Danfoss FC Protocol: Alarm Word
HMI Address PLC Address Symbol Type Remark

8 0.0 BOOL

9 0.1 BOOL

10 0.2 BOOL

11 0.3 BOOL

12 0.4 BOOL

13 0.5 VoltageError BOOL

14 0.6 TorqueError BOOL

15 0.7 TimerError BOOL

0 1.0 BOOL

1 1.1 BOOL

2 1.2 BOOL

3 1.3 Trip BOOL

4 1.4 Error BOOL

5 1.5 BOOL

6 1.6 BOOL

7 1.7 Warning BOOL

BatchXpert Engineering 135/283

Material Modules

A material module allows you to easily create Material transfers either for Raw materials, produced materials or

Transfers between two batches. This module allows you to specify a material that is being transferred, and origin,

destination batch and an amount. When the Transfer is marked as “Finished”, a new historical record for this

transfer is created.

For material transfers one must consider the following definitions:

• Raw Material Intake: A material is put into the batch, which has no “Origin”. These are usually things like

Malt, Sugar, Hops, and other ingredients that go into a Batch. These dosing can either be “Manual”,

meaning the dosing amount is not metered, or “Automatic”, meaning that there is some kind of

measurement to determine the amount of this material that went in.

• Batch to Batch Transfers: These are the most important and common transfers. These are transfers that

connect two batches together to form a relationship between them. An example of this would be the

transfer of a “Brewhouse” brew into a Fermenting “Batch”.

• Produced Material: These transfers are not common, and refer to materials that are produced, but

somehow extracted from the batch. For example, “Spent Grains”, “Alcohol” from dealcoholizing plants.

In summary the Material module has two objectives:

• Record Material intakes.

• Create relations between two or more batches to form a Batch Trace

 A Material Transfer Module
Conceptually a material module should be used for “each possibility of

a Dosing” and “Each possibility of Batch Transfer”. For example, you

should have a material module for

• Each Hops dosing Pot

• For each dosing type in the Mash tun for example “Lactic

acid”, another one for “Enzymes” et.

• For each dosing in the Wort kettle for example “Honey”

• For each dosing in the Wort kettle for example "Gypsum”

If you have an automatic dosing pump, you should implement a

Material Module for each of the Dosing Pumps, or automatic dosing

mechanisms.

In Summary, you should represent each manual addition step and

each automatic dosing that is implemented in the process, by its own

material module.

BatchXpert Engineering 136/283

Configuration of available materials
All the configuration of material types and materials is done in

the “Material Configurator” application. In this application you

can manage your different Material Types and the specific

materials in them.

Material Group

A material group is a hierarchical entity to group material types

of a specific category together. The main purpose of Material

groups is the organization of Material types into categories.

Material Type

A Material is a specific “Product” that can be added into a Batch

or is produced by a batch. Material type can be for example:

Wheat Malt, Aroma Hops, Honey, Cold Wort etc.

Material

A specific material is a specific batch, lot, or serial number of products of a material type. If an installation

receives multiple batches, for example aroma hops, each batch of received aroma hops would be a specific

Material. When it comes time to add the aroma Hops to the Bew, the operator can select the specific serial

number of hops he is inputting into the batch.

If no specific material exists, you can use the “Generic” material, that exists for all Material types.

Material is a way to be able to track the specific identification of a specific batch of raw materials that was used

during production.

Faceplate

BatchXpert Engineering 137/283

Manual and Automatic Mode
Material transfer can be done Manually or in Automatic mode. If you implement a Material module in the process

itself, it is usually done “Automatically”. The status is defined as:

• Automatic: The Plc defines when a transfer starts and ends. The operator may still enter the quantity,

but fundamentally the transfer is linked to the process of the units involved. The quantity may be

provided automatically by some sensor or provided manually by the operator. The crucial distinction is

that at least either the source or destination PRID is being assigned by the plc “Automatically”.

• Manual: The Transfer is not linked to any current process. It is entirely done by the operator, and the

Material module functions as a mere method of registering this transfer. Usually this may happen if you

have a Manual cellar and after the fact that, for example, and green beer transfer happens, the operator

creates an “Manual” batch Transfer that links two batches together. Of course, this still requires there to

be batches that the transfer can be linked to, so some process automation must be present anyway.

In 99% of the cases, you will want to use “Automatic” operating mode.

Raw Material, Product and Side product
These settings define how this transfer should be treated. In the plc there is an indicator for “Prid” which always

refers to the current Units batch, and the “Partner Prid” to the associated batch. Depending on the setting, the

partner Prid will be either “0” for Raw material intakes, or the destination batch where the transfer goes to.

Side products are the opposite of Raw material transfers. These also do not have an “Partner Prid” associated, but

instead of going into the current batch, they go out. These are materials such as “spent Grains”, “used Filtration

Earth”, etc.

Operation Requests
If the dosing is a manual operation, you may generate an “Operator Request”, so that the module will be marked

with operator request and requires confirmation. At that moment it is also possible for the operator to select a

specific quantity and even select a specific Material to be added into the batch transfer.

General Usage for Raw material intakes
A raw material intake is a transfer that has no “Origin” or “Source” PRID associates with it. This is usually the case

for dosing such as “Malt”, “Hops” and other ingredients, which may be entered into a batch either manually (for

example Hops), or automatically by a dosing system.

The Module must be configured as “Raw Material Intake”

Manual dosing with Operator Request
NETWORK

TITLE =phase 11: Prepare Dosings

X011: SET ;

//user Message

 U "PA";

 S "OpReq"; //this will trigger the Operator Request for the Process unit

//Set modules Destination Prid

//Since it is a material going into this batch, we are the destination, and there is no “Source”

//how the PRID and Partner_PrID are considered, depends on the setting of “Raw Material”,

//“Product” or “Side Product”

 L L#0;

 T "Bx MM D".Mat21.Partner_PrID

 T "Bx MM D".Mat22.Partner_PrID

 L “Uxx”.U.Prid;

 T "Bx MM D".Mat21.Prid

BatchXpert Engineering 138/283

 T "Bx MM D".Mat22.Prid

// activate material modules

 UN "PFCycle";

 SPB fc11;

//if the Dosing is requested in from the recipe, then we request the operator to confirm the Material

//Module

//Mash Tun - Additive 1

 L "Uxx".Para[31].Sp; //We preset the MM’s quantity to the one requested by the recipe

 T "Bx MM D".Mat21.Val; the operator may still adjust //This, before confirming

 L 0.000000e+000;

 >R ;

 S "Bx MM D".Mat21.OPReq; //this will mark the MM as Operator requested

//Mash Tun - Additive 2

 L "Uxx".Para[32].Sp;

 T "Bx MM D".Mat22.Val;

 L 0.000000e+000;

 >R ;

 S "Bx MM D".Mat22.OPReq;

fc11: SET ;

Automatic dosing with measurement for dosing quantity
NETWORK

TITLE =phase 11: Dosing Lactic Acid

X012: SET

//Material Transfer

 U "PFCycle"

 = "Bx MM D".Mat20.Reset //we reset the module to prepare it for a new Transfer

 U "PA"

 = "Bx MM D".Mat20.Start //We start the Transfer, which generates a historical record

 U "Uxx".Para[2].D //We end the transfer when dosing is finished. This will record

 O "PLCycle" //The amount and the dosing time with source and destinations

 = "Bx MM D".Mat20.End

 L "Uxx".Para[2].Val //We provide the dosing quantity from any measurement we like

 T "Bx MM D".Mat20.Val //in this example it is done by “Time”

//Dosing Parameters

 U "PA"

 S "Uxx".Para[2].S

 UN "Bx Act D".Act49.On

 U "PA"

 = "Uxx".Para[2].H

 UN "Uxx".Para[2].D

 U "PH"

 S "Bx Act D".Act49.ACo

// phase end condition

 U "Uxx".Para[2].D

 U "Uxx".Para[4].D

 = "PhaseEnd"

 SPA END

BatchXpert Engineering 139/283

Usage for Batch-to-Batch transfers
Batch-to-Batch Transfers are like Raw material intakes, with the difference that they have an “Partner PRID

“associated to them, that of course corresponds to the Batch where we are transferring into.

Transferring Wort into a Fermenting Cellar

In this example we are transferring wort via a Wort line unit into a selected fermenting cellar. The wort line unit

will always have the same process PRID as the wort cooler, as it still belongs to the brewhouse. The fermenting

tank has its own PRID, since it mixes different batches into a new batch.
NETWORK

TITLE =phase 11: Transfer

X007: SET

// signals to partner

 U "PA"

 S "Bx UnitCom D".U.Master1.FillReq

 S "Bx UnitCom D".U.Master1.FillActive

 S "Bx UnitCom D".U.Slave1.TransReq

 S "Bx UnitCom D".U.Slave1.TransActive

 U "PH"

 S "Bx UnitCom D".U.Master1.FillRel

 S "Bx UnitCom D".U.Slave1.TransRel

 U "PH"

 U "Bx UnitCom D".Master1.OpenTank

 S "Bx UnitCom D".U.Slave1.OpenTank

//Material module

 U "PA"

 = "Bx MM D".Mat1.Start

// transfer prid

 L "PrId"

 T "Bx MM D".Mat1.PrID

 SET //we select “Product Transfer” in the plc, so it cannot be changed

 R "Bx MM D".Mat1.Receive //by the Faceplate. Just so nobody can select incorrect options

 L "Comm KS2 Data".ReceiveData.WCcomm.Val1 //The Wort quantity comes in from an

 T "Bx MM D".Mat1.Val //Communication from the wort cooler

 L 1.000000e+000

 T "Bx MM D".Mat1.Share //We have 1 = 100% share of the transfer

 L "Bx UnitCom D".Slave1.PrId //the Partner PRID is the Prid of the selected Fermenter

 T "Bx MM D".Mat1.Partner_PrID

//phase end condition

 U "Bx UnitCom D".Master1.TransEnd

 O "Bx UnitCom D".Master1.Step0

 UN "PFCycle"

 S "PhaseEnd"

 S "Bx MM D".Mat1.End //We set the End of the Material transfer when the

 //phase ended

 SPA END

Other settings
The “Reset Quantity” and “Reset Material” are options to automatically reset the corresponding value whenever

a new transfer starts by setting “Bx MM D".Matxx.Reset” to TRUE. This forces the operator to input new valid

data to be able to confirm the operator’s request.

BatchXpert Engineering 140/283

Process Unit

A "unit" is a production unit, such as the Fermentation tank, Pasteurizers or Filter, called in the above systems and

sequencer. Programming these Units is where most of the programming is being done in a typical project. Units

contain all the Phases and action and are the consumers of all the control modules. To achieve quick and easy

programming, there are some helper functions and Tools provided.

Units are the entities that execute the phases of the steps defined in a Recipe. A unit will carry out the following

tasks:

• Copy the Parameters from the current recipe step to the current parameters in the Unit Data block

• Execute the Unit function, with the corresponding Phase, according to the current step

• Register Historical events if any Phase or step has finished.

General Structure of a Unit in the PLC
In the PLC, and Unit is always composed of:

• A Unit data block which holds the Units recipe, status, and some user data.

• A Unit Function block, which includes most of the general unit settings, such as Actuator release,

Parameter transfers, and other logic that is not related to recipe execution. This Function block,

eventually called FC100, which then called the Unit Function.

• A Unit Function, where all the Units Actions are programmed.

The Units follow a fixed numbering scheme of: Unit DB, FC, and FB = Unit Number + 100. For example:

• Unit 1 DB 101, FB 101, FC 101

• Unit 2 DB 102, FB 102, FC 102

• Unit 120 DB 220, FB 220, FC 220

BatchXpert Engineering 141/283

Flowchart
The following diagram represents the execution flow of a unit of one single PLC cycle:

• First starts with the OB1 where the unit's FB is called.

• In the FB, actuator interlocks (releases) are performed, process values and parameters are transferred,

and the FC of the same unit is called.

• In the FC, the executions that must be conducted in each step are conducted, counters are reset, etc.

The flowchart in the cycle can be represented as follows.

BatchXpert Engineering 142/283

Unit Function Block
The Unit function block represents the Entry point for the implementation of a Process unit and its functionality.

The function block is an FB that should have no Parameter and no Static values, so that it can be called by an “UC”

(Unconditional Call) from the OB1 plc cyclic execution Organization block.

The Process Units function block has the following responsibilities, more details in the next

• Transfer Current values to the Units Parameter Modules

• Call FC100, which will be called the Unit Function, where all the phases are implemented.

• Activate Digital input alarms

• Activate Analog input alarms

• Handle Counters, assign pulse values to them, or generate pulses from current flow values

• Set xAuto on the Actuator control modules, so they assume their automatic condition from this unit

• Implement Actuator Release logic

• Any other additional logic, which is not dependent on a specific recipe or phase

Unit Function
The unit function implements all the logic of a Process unit’s phases. These phases are being called by a recipe

from the BatchXpert configuration, where you define the order of phases and steps to execute, and what

parameters exist in each phase.

The unit function will be executed implicitly from the FC100 call, in your Units Function Block.

You will find more information in the dedicated chapter of this manual.

User Data
Many implementations need to store some user data specific to a unit. This may be the accumulation value of an

“Flow Integrator” function, the temporary value of an average calculation etc. For this, each unit includes an

“USER” section in its Unit data block. These values can be freely used for any purpose the programmer sees fit.

Address Symbol Type Remark

0.0 b24 BOOL user bit

0.1 b25 BOOL user bit

0.2 b26 BOOL user bit

0.3 b27 BOOL user bit

0.4 b28 BOOL user bit

0.5 b29 BOOL user bit

0.6 b30 BOOL user bit

0.7 b31 BOOL user bit

1.0 b16 BOOL user bit

1.1 b17 BOOL user bit

1.2 b18 BOOL user bit

1.3 b19 BOOL user bit

1.4 b20 BOOL user bit

1.5 b21 BOOL user bit

1.6 b22 BOOL user bit

1.7 b23 BOOL user bit

2.0 b08 BOOL user bit

2.1 b09 BOOL user bit

2.2 b10 BOOL user bit

BatchXpert Engineering 143/283

2.3 b11 BOOL user bit

2.4 b12 BOOL user bit

2.5 b13 BOOL user bit

2.6 b14 BOOL user bit

2.7 b15 BOOL user bit

3.0 b00 BOOL user bit

3.1 b01 BOOL user bit

3.2 b02 BOOL user bit

3.3 b03 BOOL user bit

3.4 b04 BOOL user bit

3.5 b05 BOOL user bit

3.6 b06 BOOL user bit

3.7 b07 BOOL user bit

4.0 DINT0 DINT user long int

8.0 DINT1 DINT user long int

12.0 DINT2 DINT user long int

16.0 DINT3 DINT user long int

20.0 DINT4 DINT user long int

24.0 DINT5 DINT user long int

28.0 DINT6 DINT user long int

32.0 DINT7 DINT user long int

36.0 DINT8 DINT user long int

40.0 DINT9 DINT user long int

44.0 DINT10 DINT user long int

48.0 DINT11 DINT user long int

52.0 DINT12 DINT user long int

56.0 DINT13 DINT user long int

60.0 DINT14 DINT user long int

64.0 Val0 REAL user value

68.0 Val1 REAL user value

72.0 Val2 REAL user value

76.0 Val3 REAL user value

80.0 Val4 REAL user value

84.0 Val5 REAL user value

88.0 Val6 REAL user value

92.0 Val7 REAL user value

96.0 Val8 REAL user value

100.0 Val9 REAL user value

104.0 Val10 REAL user value

108.0 Val11 REAL user value

112.0 Val12 REAL user value

116.0 Val13 REAL user value

120.0 Val14 REAL user value

124.0 Val15 REAL user value

User Data Example
Simple Time Delay counter
//Count timer

L UxxD.User.TimerDelayMem //Accumulated Time

L CycleTimeSec //Current time in seconds: 0,012 = 12 msec

+R

T UxxD.User.TimerDelayMem //Save new sum to the accumulation

BatchXpert Engineering 144/283

//Check timer

L UxxD.User.TimerDelayMem

L 30.0 //30 seconds

>R

SPBN TiDo

L 0.0

T UxxD.User.TimerDelayMem //Reset Accumulated Time to restart it

//Do something here

TiDo:

Detect Silo number has changed

By using User Variables, the transfer of the current silos has a one-cycle delay. Thus, to activate a log entry in a

silo it can be swapped, thereby logging the deletion of the previous silo.

UserDint 01: Memory of the next silo number:
 L "Dxx".User.Dint1DIn1

 T "Uxx".Para[13]. Val

 L "SiloNo"

 L "Dxx".User.Dint1

 <> D

 U(

 L 0

 >D

)

 S "ProtWrite"

 L "SiloNo"

 T "Dxx".User.Dint1

BatchXpert Engineering 145/283

Unit Data block

A Unit data block which holds the Units recipe, status, and some user data.

Data block overview
Address Name Data type Description
0.0 U “sBx Unit” General Unit status, Program

Numbers, Prid etc.
80.0 User P01U004 The User Data Area
208.0 StartOption “sBx StartOption” The Start Options that where active for

the current Recipe
240.0 Property ARRAY[1...32] of REAL The unit properties
368.0 StatusInfo “sBx UnitStatusInfo” The Current Unit’s Hygienic status
400.0 Para ARRAY[1...40] of "sBx ParaM" The parameters of the current recipe’s

current active phase
1000.0 Recipe

The current Recipe

1000.0 Recipe. Header sBx RecipeHeader The header of the current Recipe
10024.0 Recipe.Steps ARRAY[0...19] of "sBx RecipeStep" All the steps of the Current Recipe

Data block “Unit Status”
Address Symbol Datatype Comment
0.0 Used BOOL spare
0.1 HornOpRequest BOOL horn operator request
0.2 OpRequest BOOL operator request
0.3 s03 BOOL spare
0.4 s04 BOOL spare
0.5 s05 BOOL spare
0.6 s06 BOOL spare
0.7 s07 BOOL spare
1.0 Steril BOOL unit sterile
1.1 Clean BOOL unit clean
1.2 NotClean BOOL unit not clean
1.3 Product1 BOOL product 1
1.4 Product2 BOOL product 2
1.5 Product3 BOOL product 3
1.6 Product4 BOOL product 4
1.7 ReqCIP BOOL Unit must be Cleaned before next Production
2.0 GAlQuitt BOOL general alarm acknowledge
2.1 Ign BOOL ignore alarm
2.2 Sim BOOL simulation
2.3 Run BOOL unit in run mode
2.4 Pause BOOL unit in pause mode
2.5 Hold BOOL unit in hold mode
2.6 EmHold BOOL spare - unit in emergency hold
2.7 Maint BOOL maintenance
3.0 GAl BOOL general alarm

BatchXpert Engineering 146/283

3.1 GAlS BOOL general alarm save
3.2 SCE BOOL spare - status check error
3.3 Watchdog BOOL watchdog alarm
3.4 Step0 BOOL unit in step 0
3.5 ReadyStart BOOL unit ready for start
3.6 Active BOOL unit active (not step 0)
3.7 CIPModus BOOL unit in CIP modus
4.0 UnitNo DINT unit number
8.0 Phase DINT phase number
12.0 StepNo DINT step number
16.0 Charge DINT charge number
20.0 PrId DINT PrId
24.0 ProgNo DINT program number
28.0 Message DINT message text
32.0 THold REAL time Unit in hold
36.0 TRun REAL time unit in run
40.0 TStepRun REAL time step in run
44.0 TRecDownLoad REAL time recipe download

BatchXpert Engineering 147/283

Unit Function Block

The Unit Function Block is where you manage and set up most of the logic that must run independently of any

Recipe or recipe phase logic. This usually includes things like “Alarm conditions”, “Parameter Transfers” and

“Actuator interlocks”.

Eventually this function block must call FC100 with the current unit’s number as input parameter, so that it can

eventually call your Units function, with parameters from the currently executing recipe.

The Unit Function block is executed exactly once every plc execution cycle (directly from OB1).

Usual Structure of a Units Function Block
Usually, a Unit Function block will have the following general structure, although this example is a stripped-down

example, which should only indicate its functionality.

FUNCTION_BLOCK "U005 config"

TITLE =Unit 005 Example Unit

BEGIN

NETWORK

TITLE =Init

//Here we preset some Help Variables that we can use later down for creating all

//the Interlocks

//Here we set the Emergency Stop Input that applies.

 UN "Bx DIn D".DIn[7].Gals //We want the User to confirm the alarm

 U "Bx DIn D".DIn[7].Sig

 = #EmStop

//Here we set vessel specific safety equipment, such as "Manholes", "Key Switches"

//et. This will block Actutors that are Connected directly to the interior of the

//Tank

 UN "Bx DIn D".DIn[8].Gals //Manhole Switch: We want the User to confirm the alarm

 U "Bx DIn D".DIn[8].Sig

 UN "Bx DIn D".DIn[9].Gals //Key Switch: We want the User to confirm the alarm

 U "Bx DIn D".DIn[9].Sig

 = #VesselSafe

//We can mark the Actuator as "Safety relevant", so the user cannot activate

//simulation nor Ingnore form the Faceplates. The Delay times are also limited

//to a few seconds (so the User can //not input an OFF Delay of 9999 Seconds,

//effectivly eliminating the alarm).

 Set

 S "Bx DIn D".DIn[8].xSafety //Manhole Switch

 S "Bx DIn D".DIn[9].xSafety //Key Switc

NETWORK

TITLE =Parameter transfer

// Here we transfer some Current values form the corresponding Control modules

// to the Parameter modules of this Unit

 L "Bx Cnt D".Cnt3.PVal; //Totalizer Water Amount

 T "U005 data".Para[15].Val; //Amount Water

 L "Bx AIn D".AIn14.PVal; //Level of Unit

 T "U005 data".Para[14].Val; //Level of Unit

 L "Bx AIn D".AIn19.PVal; //Temperature of Unit

 T "U005 data".Para[18].Val; //Temperature of Unit

... //here are more assignments, as needed

BatchXpert Engineering 148/283

NETWORK

TITLE =Unit Phase Control

//Here we must call FC100, which in turn eventually will call the Unit function,

//where all the Unit Phases are implemented. It is important to assign the Current

//Units number to the function

 CALL "Bx Unit" (

 UnitNo := 5); //Here we must give the Unit Number

NETWORK

TITLE =Analog Inputs

// Here we can activate any analog input related Alarm. Usually this means that we
//activate extreme limites.

//

//Please keep in mind, that you can also activate these alarm limits from the

//Faceplate, so if we set them here in the PLC, we take away the option to adjust

//them from the facplate, since the PLC will always overwrite the value set by

//the faceplate.

//

//This means, that we should only set alarms that are absolutly necesary, or have

//some kind of logic to them, and leave the other alarms to the user to be

//activated or deactivated.

//Permanent Alarms

 Set

 S "BX AIn D".AIn[1].EHHA //Volume of Tank, high alarm, to avoid overfilling

//Simple Alarm logic.

//If the Actuator output is TRUE, meaning the Actuator tries

//to activate, the Low Low Alarm is activated. Keep in mind that the Alarm delay

//will still apply and give the alarm condition some thime to "normalize"

 U "BX Act D".Act[179].Out //Pump Running

 S "BX AIn D".AIn[1].ELLA //Flow Alarm

// low water flow

 U "Bx Act D".Act130.Out; //Product Pump

 S "Bx AIn D".AIn19.ELLA; //Product Flow Low Alarm

// alarm low pressure in pipe

 UN "Bx Act D".Act127.Out;

 U "Bx Act D".Act304.Out;

 UN "CIPModus";

 S "Bx AIn D".AIn11.ELLA;

NETWORK

TITLE =Calculated values

//Here we have a calculated value that is represented as an Analog Input

//We do not want any scaling to happen, since we already calculated its

//Process value. We avoid this by setting the “NPA” signal

//AIn 60: LT_P_02x1: difference pressure measurement lauter tun

 L "Bx AIn D".AIn12.PVal;

 L "Bx AIn D".AIn11.PVal;

 -R ;

 T "Bx AIn D".AIn60.xPVal;

 SET ;

 S "Bx AIn D".AIn60.NPA;

BatchXpert Engineering 149/283

NETWORK

TITLE =Digital Input Alarm

//Similarily here we activate Digital Alarms

//Simple example

 SET

 S "Bx DIn D".DIn[2].EA0 //if the Digital input becomes FALSE, it will activate an alarm

//Example for alarms depending on the Process

//if the Wron panel os connected, or the correct one is missing, we activate an

//alarm

 U #Production

 S "Bx DIn D".DIn[12].EA0 //Panel Connection sensor for Production

 S "Bx DIn D".DIn[13].EA1 //Panel Connection sensor for CIP

 U #CIP

 S "Bx DIn D".DIn[12].EA1 //Panel Connection sensor for Production

 S "Bx DIn D".DIn[13].EA0 //Panel Connection sensor for CIP

//Using an "LSL Empty Signal" as dry run Protection for pumps

//If the pump is transferring from the vessel, we activate an Alarm on the LSL

//when it is "Empty” and adjust an Alarm delay of arround 30 seconds.

//This means, if the pump runs for more than 30 seconds, while the vessel is empty

//it will activate an alarm, which in turn can block the pump

 U "BX Act D".Act[179].Out //Transfer Pump

 U "Bx Act D".Act[123].Out //Outlet Valve of Vessel

 S "Bx DIn D".DIn[1].EA1 //Empty signal of Vessel (TRUE = Empty)

//Similarly to the Analog Input alarm, we manage Digital input alarms

 SET ; //These are unconditionally active

 S "Bx DIn D".DIn37.EA0;

 S "Bx DIn D".DIn38.EA0;

 S "Bx DIn D".DIn40.EA0;

 U "Bx Act D".Act304.Out; //Here the alarm depends on an Actuator

 S "Bx DIn D".DIn84.EA0;

//Manhole Alarm

 UN "U005 data".U.Step0; //The alarm is not active in “Start position”

 S "Bx DIn D".DIn169.EA0;

NETWORK

TITLE =Counters

//Here we have to activate the Conters "Count signal monitoring" if the transfer

//pumps are running and also assign the Counting signal to the Counter module.

//

//We recommend that you configure your Flow meters to deliver a "Normally High"

//signal, which becomes "LOW" when a pulse is transmitted. The reason for this

//ist, that then you can make an "Alarm when FALSE" monitoring on the Counting

//signal, with a delay time of 2 seconds, knowing the pulse will pull the

//inputs low for only a few miliseconds.

//But if the counting input gets disconnnected, you will create an alarm.

//

//Most modern Flow sensors allow you to adjust the Counting signal to "Normally

//High". Sometimes the setting is called "NPN" or "PNP", referring to the

//Transistor type that is used.

//if the Pump is running, we activate the Pulse monitoring.

//this montiores that we receive impuleses earlier than the

//Alarm delay on the Conouter module.

 U "BX Act D".Act[179].Out //Transfer Pump

BatchXpert Engineering 150/283

 S "BX Cnt D".Cnt[5].EAImp

//Here we assign the Counting Digital input to the Counter module

 U "BX DIn D".DIn[97].Imp

 S "BX Cnt D".Cnt[5].xSig

//As mentioned above, if we have a "Normally HIGH" counting signal, we can monitor

//it. If FALSE for more than about 2 seconds, we can safely assume that the Signal

//is damadged and activate an alarm

 SET

 S "Bx DIn D".DIn[97].EA0

NETWORK

TITLE =Regulators

//Here we define when a regulator starts acting, and what its nominal and current

//values are. Usually, the Regulator starts acting when an Actuator is activated.

//if there is no physical device, you should create an “Virtual Actuator”, that has

//no physical output but nevertheless can pe activated by its “.Aco” and has an

//HMI symbol on the Graphics display.

//

//For regulators we basically must assign the following to the Regulator Module:

//-When should it start "Regulating"

//-What is its Setpoint

//-What is its Current Value

//-What is its "Fixed value"

//if the Valve opens, we start regulating and activating alarm monitoring

 U "Bx Act D".Act328.Out;

 S "Bx PID D".PID9.MStrt; //This will start regulating

 S "Bx PID D".PID9.EAl; //and start the Alarm monitoring

//Transfer the Nominal and current values

 L "Uxx".Para[12].Sp;

 T "Bx PID D".PID9.xSp;

 L "Uxx".Para[12].Val;

 T "Bx PID D".PID9.xPVal;

//The Static Value is used if the Regulator receives the "MStc" command

 L "U001 data".Para[15].SP

 T "Bx PID D".PID[1].Stc

NETWORK

TITLE =Manual/Automatic Handling

//Here we assign the desired automatic state form the Unit onto the Actuator

//modules. Since we are using the “Run” symbols, which always reflects the status

//of the last FC100 call, this must be programmed after the FC100 was called,

//above.

//Actuators

 U "Run";

 S "Bx Act D".Act10.xAuto;

 S "Bx Act D".Act11.xAuto;

 S "Bx Act D".Act42.xAuto;

 S "Bx Act D".Act43.xAuto;

//Here we do the same for Regulators and Frequency Converters

 R "Bx PID D".PID5.MSpExt;

 R "Bx PID D".PID5.MCOn;

 R "Bx FC D".FConv1.MSpInt;

NETWORK

BatchXpert Engineering 151/283

TITLE =Act Safety Releases

//Here we program the logic for the “Security Release” (Rel). The user cannot

//ignore this release, and should include safety equipment, such as Manhole

//switches, Emergency Stops etc.

//Here Are Actuator Interlocks, which depend on the Emergency Stop, but are not

//Connected directly to the interior of the Tank, so the "Vessel" safety does not

//Apply to them

 U #EmStop

 = "Bx Act D".Act[27].Rel

 = "Bx Act D".Act[556].Rel

 = "Bx Act D".Act[555].Rel

 = "Bx Act D".Act[432].Rel

 = "Bx Act D".Act[123].Rel

 = "Bx Act D".Act[334].Rel

//Here Are Actuator Interlocks, which are Connected directly

//to the interior of the Tank, so the "Vessel" safety does

//Apply to them

 U #EmStop

 U #VesselSafe

 = "Bx Act D".Act[28].Rel

 = "Bx Act D".Act[56].Rel

 = "Bx Act D".Act[55].Rel

 = "Bx Act D".Act[42].Rel

 = "Bx Act D".Act[13].Rel

 = "Bx Act D".Act[34].Rel

//Actutors that are not subject to any of the safety interlocks, come here.

//This however usually only applies to "Lamps", "Accoustic indicators" and such,

//And NEVER to Energized equipment such as Valves or Pumps.

//Energized equipment must always be interlocked by at least the Emergency Stop

 SET

 = "Bx Act D".Act[13].Rel

 = "Bx Act D".Act[34].Rel

NETWORK

TITLE =Act Releases

For all further releases please see Actuator Interlocks

BatchXpert Engineering 152/283

Simple Interlocks examples
More Detailed examples can be found here: Actuator Interlocks.

In this example we will only show some examples. We separate it out into dedicated segments because Interlocks

usually are quite complex and verbose
NETWORK

TITLE = Act45 - dosing pump CaCl2 lauter tun

//This pump may only run when the signal is true and the actuator 125 is off

 U "Bx DIn D".DIn88.Sig;

 U "Bx Act D".Act125.Off;

 = "Bx Act D".Act45.Rel2;

NETWORK

TITLE = Act 112 - valve CIP return lauter tun

//this Valve may only open if the other one is closed

 U "Bx Act D".Act107.Off;

 = "Bx Act D".Act112.Rel2;

NETWORK

TITLE = Act124 inlet valve 1 lauter tun

//the inlet can only open if the tank is not full

 U #VesselSec;

 UN "Bx AIn D".AIn12.MHHA;

 = "Bx Act D".Act124.Rel2;

NETWORK

TITLE = Act127 - valve weak wort to weak wort tank

//There is no Interlock, it is always enabled

 SET ;

 = "Bx Act D".Act127.Rel2;

Pump Interlocks
Pumps are complex to correctly interlock. The interlocks are divided into three parts:

• At least one suction way must be open for the pump to not cavitate.

• At least one pressure way must be open, so the pump has somewhere to go

• And the safety equipment must be OK. This usually includes “Dry Run” switches etc.

NETWORK

TITLE = Act304 - lautering pump

//Here we preset the signals, so we can later “S” them and avoid Parentheses and

complex AND/OR constructs

 Clr

 = #Suction;

 = #Pressure;

//Suction side

//In this example, there is no Suction side valve, the pump is directly connected

//to the Tank

 SET ;

 = #Suction;

//Pressure to PRV

 U "Bx Act D".Act132.On;

 U "Bx Act D".Act143.On;

 U "Bx Act D".Act324.On;

 S #Pressure;

//Circulation

BatchXpert Engineering 153/283

 U "Bx Act D".Act126.On;

 U "Bx Act D".Act324.On;

 S #Pressure;

//Uadl

 U "Bx Act D".Act127.On;

 U "Bx Act D".Act324.On;

 S #Pressure;

//General Release

 U #Pressure;

 U #Suction;

 UN "Bx DIn D".DIn84.GAlS;

 U #VesselSec;

 = "Bx Act D".Act304.Rel2;

BatchXpert Engineering 154/283

Unit Parameter Module

Before we can talk about implementing

Phases logic in the Unit Function, we must

talk about Unit Parameter Modules, since

they are a vital part of how this works.

BatchXpert allows you to define a maximum

of sixteen simultaneous Parameters per

Phase, from a total of forty available

modules. This means that you have 40

Parameters available, but you can only

assign sixteen of them simultaneously to a

single phase. Of these 40 Parameter

modules, parameter Module Number 1 is

always used as an “Watchdog” timer. On

this module you can change the time

resolution (Seconds, minutes, hours), but it is

always internally treated as an “Watchdog” time.

If you need more than sixteen simultaneous parameters, you should check if there is a possibility to offload some

parameters into properties, switches, or other modules. For this you must analyze carefully if the parameters

really must be different in each recipe, or if they can be a global parameter. A good example of this is “Empty

delay Timers”. Usually these are never changed, and really work as global settings, so they should not be

Parameters, but rather be Properties.

All parameters of a step are represented as a parameter line in the

“Process Details”, also called “Lupe” or “Magnifier”. In this Process

detail window, you will have access to all sixteen simultaneous

Parameters that you defined for the current Phase of a Unit.

Parameters have a Type, which defines how they behave, a Nominal

and current value, as well as some statuses that the user can use in

the Phase logic.

Parameter “Done” status.
Every Parameter, independently of its type, has an “D” status, which indicates that the parameter is “Done.” The

“Done” state is simply defined as:

𝐷 (𝐷𝑜𝑛𝑒) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 ≥ 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

This means, that every time the current value is greater or equal to the Nominal value from the recipe, it is

marked as “Done” from the Unit function. This means, that the “D” status can be used as comparison limit, and in

the case of timers, will indicate that at least the set amount of time has passed.

Figure 5 Example of a Parameter module configuration in the Batch Configurator

BatchXpert Engineering 155/283

Parameter type: Nominal and Current Value
This is the most common case that you will use. It simply represents a nominal value that has a current value

assigned to it. It has no special functionality, except for the comparison to create the “Done” status, that every

Parameter type uses.

The current value for these values MUST be assigned form the user program in the Unit function block in the

“Parameter transfer” section.

Parameter type: Time as Seconds, Minutes, hours, or days
This timer will automatically increase their Current value by the time elapsed during the last execution.

Depending on the time base used, the nominal and current value will represent these base values.

• If the “S” (Start) Command is true, the current value will start counting.

• If the “S” (Start) Command becomes true, the current value will reset to 0.0.

• If the “H” (Hold) Command becomes true, the current value will not count and remain on its current

value.

• If the “Res” (Reset) Command becomes true, current value will reset to 0.0.

Since the Current value is automatically increasing and the “Done” status is also compared, the “Done” status

effectively functions as you Indication that the “Timer has elapsed”, as long as the Parameter “S” Command stays

true.

Since the current value is counting automatically, you cannot write the “Val” of the parameter in the Unit function

block, as you would for an “Nominal and Current Value”.

Parameter type: Nominal Value
These work similarly to the “Nominal and Current Value”, except that they do not show the current value in the

process details. The transfer of the Current value in the Unit function block is optional.

Also, the “Done” status may, or may not be valid, depending on if you have transferred a valid Current value to

the “Val” of the parameter module.

Parameter type: Current Value
These work similarly to the “Nominal and Current Value”, except that they do not show the Nominal value in the

Process details. Since there is no way to define a Nominal value from the operator or the recipe, the “Done”

status cannot be used with these parameter types.

Parameter type: Enumeration
This value works like the “Nominal Value”, except that it shows an enumeration selection list in the process

details, instead of a numeric value.

This is extremely helpful if you have discrete values that may be valid nominal values, instead of a value range. For

example, for the selection of an “Agitator Behavior” where:

0 = Off

1 = On Slow

2 = On Fast

3 = On Intervals

BatchXpert Engineering 156/283

Parameter type: Material type and Material
This value works like the “Nominal Value”, except that it shows a selection of a Material Type or a Material itself

in the Process details. These parameters usually work in conjunction with the “Material Modules” and are used to

indicate material usage in the recipe to the user.

For example, if you have a Beverage Mixer that has separate “Mixing ingredient” steps. You can use this

parameter to let the recipe define what ingredient must be dosed into the beverage mixer by the operator. The

selected Material Name is then displayed in the Process details.

Visualization Type
The visualization of a Parameter affects the color that is given to the parameter in the recipe and the Process

detail dialog. It has no effect on the PLC programming and does not affect any functionality.

Change Setpoint at Run Time
Parameter module Nominal and current values are accessible from

the Process detail Window, also called “Lupe” or “Magnifier”. If any

nominal value is changed, this will generate an entry in the historical

data collection system, so that each parameter change is traceable.

Programming Examples
Basic Timer to end a Phase.

//The Parameter module 2 is defined as Parameter Type = Time as seconds

 U "PA"

 S "Uxx".Para[2].S //Start the Parameter Module

 A "DIn". DIn[12].Sig //LSL

 ON "Act".Act[32].Out //Pump

 ON "PH"

 S "Uxx".Para[2].H //Stop counting if the pump does not run

 U "Uxx".Para[2].D //the timer has reached its nominal value

 = "PhaseEnd" //End of step

Basic Nominal and Current Value to end a Phase.
//The Parameter module 2 is defined as Parameter Type = Nominal and Current Value

//In the Unit function block:

Network

TITLE =Parameter Transfer

 L "AIn". AIn [1].PVal //Temperature of Tank

 T "Uxx".Para[10].Val

//In the Unit function:

 U "PH"

 S "Act".Act[32].Aco //Heating

 U "Uxx".Para[10]. D //The Temperature has reached its nominal value

 = "PhaseEnd" //End of step

BatchXpert Engineering 157/283

Structure
Address Symbol Type Remark

0.0 S BOOL start parameter module

0.1 H BOOL hold parameter module

0.2 Reset BOOL reset parameter module

0.3 OK BOOL OK

0.4 s04 BOOL spare

0.5 s05 BOOL spare

0.6 s06 BOOL spare

0.7 s07 BOOL spare

1.0 No BYTE Parameter module No

2.0 OnlySp BOOL only setpoint

2.1 OnlyVal BOOL only value

2.2 Enum BOOL enumeration

2.3 TSec BOOL time in sec

2.4 TMin BOOL time in minutes

2.5 THour BOOL time in hours

2.6 TDay BOOL time in days

2.7 s27 BOOL spare

3.0 Endcond BOOL phase end condition

3.1 ManuInput BOOL manual input required

3.2 AlarmCond BOOL alarm condition

3.3 s33 BOOL spare

3.4 s34 BOOL spare

3.5 s35 BOOL spare

3.6 s36 BOOL spare

3.7 s37 BOOL spare

4.0 Sp REAL setpoint

8.0 Val REAL value

BatchXpert Engineering 158/283

 Unit Phases

The Unit function is where all the Phases of a unit are implemented. A Unit phase is a discrete processing step in a

recipe. It has a definitive beginning and a definitive “End” where the recipe steps forward and activates the next

Phase, defined in the recipe. A Phase also comes with a set of up to 16 configured Parameters, and their Nominal

values that represent all nominal values of this Phase.

Phases can be combined in a recipe in any order the operator chooses and have no order of execution. The order

of execution of the phase depends solely on the recipe and the order in which the passes and steps are defined in

it.

Examples for Phases are:

• Heating Up

• Transfer

• Filling

• Mixing

• Homogenization

• Boiling

All actions that a Phase must perform, every Actuator must activate, every timer it must start, are programmed in

the Phase in this Unit function. Also, the “Phase End condition” is defined here for each of the phases.

However, keep in mind that a phase only “Knows” that it has finished, not what the next step will be, or what the

previous steps were. This information is only available in the recipe and should not be of any consideration in the

implementation of a phase.

Calling the Unit Function
In your Unit Function block, there is no explicit call to your

Unit function, because this function is being called from the

FC100 that you call from your Unit Function block. This

FC100 call will provide a lot of facilities, status signals and

evaluate all the commands that you can send to the Unit

from your Unit function, and it will manage recipe loading,

check which step should be executed, parameter handling

and so on.

But you must keep in mind that your Unit function will be

executed by FC100 whenever and mor importantly, as often

as this function sees fit. In consequence, this Unit function

may be called multiple times during a single plc cycle, with

different parameters. So, you cannot rely on this Unit function, to be called only once every plc cycle.

BatchXpert Engineering 159/283

When calling “Bx Unit” (FC100), this will perform the following actions:

• Copy the Unit’s Data block to the “Current Unit Data block” (DB100). More on that below.

• Create the unit status signals. Se below

• Reset the unit commands.

• Check what Phase must be executed now.

• Process the current steps Parameters, count timers etc.

• Call the Unit Function

• Evaluate unit commands and perform the requested action.

• Check what phase should be executed next.

• If there was a step change, load data for the next step and preset the nominal values and configurations

for the parameter modules.

• Send historical data if needed.

The “Current Unit Data block” (DB100)
To make Unit Functions more portable between units and projects, the “Bx Unit” (FC100) copies all statuses of a

unit onto the “Current unit data block” (DB100) which must be used when referring to data of the current unit

inside the Unit function. After the Unit function was executed, this data is copied batch to the unit’s data block.

This means that you must always use DB100 to refer to any data from the inside the unit function or use the

provided unit commands.

For example, if you want to start a parameter module, you cannot do it from inside the Unit function:

U “PH”

S “Unit 10 Data”.Para[10].S

But must:
U “PH”

S “Bx Unit”.Para[10].S

The “BX Unit” (DB100) will always refer to the currently executing unit of your Unit function. You cannot use the

Unit data block itself, as it will get overwritten by the current unit’s data block at the end of your Unit functions

execution.

All this makes porting units to other units much easier, as you do not need to make any code changes most of the

time. Especially if you are implementing “Class” programming, for example in fermenting cellars, this makes these

kinds of applications straightforward and even trivial.

BatchXpert Engineering 160/283

Status Signals
For convenience, there are many signals provided for the Programmer to be used in the Unit Function, that

always represent the status of the current unit, where this Unit function belongs to. All these signals can be used

through the execution of the Unit function but are ONLY valid inside the Unit function.

If you must refer to these signals outside of the Unit function, or from a different unit, you must access the

requested unit’s data block directly.

Symbol Address Remark

StatusSteril M 1.0 unit status sterile

StatusClean M 1.1 unit status clean

SatusNotClean M 1.2 unit status not clean

StatusProd1 M 1.3 unit status product 1

StatusProd2 M 1.4 unit status product 1

StatusProd3 M 1.5 unit status product 1

StatusProd4 M 1.6 unit status product 1

ReqCIP M 1.7 unit status request CIP

Ign M 2.1 ignore alarm

Sim M 2.2 simulation

Run M 2.3 unit in run mode

Pause M 2.4 unit in pause mode

Hold M 2.5 unit in hold mode

EmHold M 2.6 spare - unit in emergency hold

Maint M 2.7 maintenance

GAl M 3.0 general alarm

GAlS M 3.1 general alarm save

SCE M 3.2 status check error

Watchdog M 3.3 watchdog alarm

Step0 M 3.4 unit in step 0

ReadyStart M 3.5 unit ready for start

UnitActive M 3.6 unit active (not step0)

CIPModus M 3.7 unit in CIP modus for Visu

ShowAlarm M 4.1 unit status alarm without hold

CIP M 4.4 unit in CIP modus

PhaseEnd M 4.7 phase end

PA M 5.0 phase active

PEH M 5.1 phase active with emergency hold function

PH M 5.2 phase active with hold function

PP M 5.3 phase active with pause function

Start M 5.4 unit start button

OperatorOK M 5.5 unit operator OK button

PFCycle M 5.6 phase first cycle

PLCycle M 5.7 phase last cycle

StatusInfo MB 1 unit status info

UnitNo MB 10 unit number

Phase MB 11 phase number

StepNo MB 12 step number

Charge MD 28 charge number

PrId MD 32 PrId

ProgNo MD 36 program number

BatchXpert Engineering 161/283

Commands
For convenience, there are some Commands provided for the Programmer, to be used in the Unit Function, which

will always trigger a specific action on the current unit, where this Unit function belongs to. All these commands

can be used through the execution of the Unit function but are ONLY valid inside the Unit function.

A command is executed by setting it to TRUE for a single cycle. All commands are automatically reset, so they can

never stay TRUE indefinitely.

Symbol Address Remark

GAlQuitt M 2.0 general alarm acknowledge

HoldReq M 4.0 hold request
Stops the current unit and puts it into “Hold”

OpReq M 4.2 Operator Request
Marks the Units as “Operator Request”, shows
an appropriate indication on the HMI screen
and the operation can confirm this action by
clicking the confirmation which will trigger the
“OperatorOK” status

ProtWrite M 4.3 phase protocol write
If activated, will record the current steps
parameters to the Historical protocol, without
affecting any parameter module, or terminating
the current step

PhaseEnd M 4.7 phase end
Maks the current Recipe Phase as finished.
The Unit will look up the next step to activate
and proceed to initiate a Step Change

StepNoNew MB 9 step number new (Jump)
By default, this will always point to the Next
step. If you want to “jump” to a different step,
you must write the step you want to jump to,
onto this value, while the “PhaseEnd” is TRUE

Step Change
When a step of a recipe is completed on a unit (PhaseEnd = TRUE), or the operator aborts the current step, the

following actions are performed in the same plc cycle without interruption.

• The current step is executed and detects the final condition = 1

• The current step is processed again with identifier "PLCycle" (last cycle)

• Creating an Historical record in the database of an “Automatic Step Completion”, or Manual “Step+” or
“Step-“

• Check which step must be executed next. Usually, it is the next step in the recipe, but may be different
due to “StepNoNew”, or the operator uses the “Step+” or “Step-“ functionality.

• Recipe values for the next Step are loaded

• Status indicators and parameter modules are updated.

• Parameter that are configured as timers, are reset

• New step is processed with identifier "PFCycle" (first cycle)

BatchXpert Engineering 162/283

Jump Distributor
The Jump distributor is used in the default phase selection implementation.
 L "Phase"

 SPL X000 //For invalid phase number we jump to “X000”

 SPA X000 //Phase 0, is invalid

 SPA X001 //if Phase = 1

 SPA X002 //if Phase = 2

 SPA X003 //if Phase = 3

 SPA X000 //if Phase = 4, but it does not exist, we use “X000” as padding

 SPA X000 //if Phase = 5, but it does not exist, we use “X000” as padding

 SPA X006 //if Phase = 6

 SPA X007 //if Phase = 7

 SPA X008 //if Phase = 8

X000: SET

 SPA END

The Jump distributor load the currently requested Phase number and then jumps to the Jump mark indicated by

the Phase number, with the first jump mark being “0”.

WARNING! The SPL instruction will NOT! Jump to the Jump mark with the correct number but will count from top

to bottom starting at 0 and jump to the resulting jump. Make sure you put “SPA X000” instructions in there as

padding

Phases every unit should implement.
Every unit should implement a set of “default” phases that make the execution

of recipes much easier. These phases are implemented in a way so that they can

be copied without changes between Units.

Start Position. This is a system phase that always must exist and cannot have

any parameters. This is the step that a unit Executes if no recipe is started.

NETWORK

TITLE =phase 01: start position

X001: SET ;

//this is a typical start request from a Master unit

 U "Bx UnitCom D".Master1.Start;

 U "Bx UnitCom D".Master1.Run;

 S "PhaseEnd";

 SPA END;

Start check. This step executes a check of all control modules that belong to this unit and only advances if all

modules are automatic and without error.
NETWORK

TITLE =phase 02: start check

X002: SET ;

// material modules

 U "PFCycle";

 S "Bx MM D".Mat20.Reset;

//Possible automatic Draining

 U "Bx Act D".Act109.Off;

 U "Bx Act D".Act112.Off;

 U "Bx Act D".Act114.Off;

 U #AnalogLSL;

BatchXpert Engineering 163/283

 UN #LSL;

 U "PH";

 S "Bx Act D".Act107.ACo;

 S "Bx Act D".Act108.ACo;

//Start Check by sending a command to the Alarm group of this unit

 U "PA";

 S "Bx DIn D".DIn75.SCS1;

 S "Bx Alarm Group D".Unit[4].SCS;

//If this Alarm group does not have a Start Check error, we go forward

 UN "Bx Alarm Group D".Unit[4].SCE;

 UN "PFCycle";

 = "PhaseEnd";

 SPA END;

Unit Status. This allows you to set the Unit’s Hygienic status when you finish a CIP. The “Status” parameter allows

you to define the step you want the unit’s status set to.
NETWORK

TITLE =phase 03: set unit status

X003: SET ;

 L "Uxx".Para[28].Sp;

 L 0.000000e+000;

 <=R ;

 SPB sest; //if a Status is selected, set it to the Unit

 L "Uxx".Para[28].Sp;

 RND ;

 T "StatusInfo";

 UN "PFCycle";

 S "PhaseEnd";

sest: SET ;

 SPA END;

Stop Unit if a Control module is on error or Watchdog time has elapsed.
Depending on the needs of the process you are implementing, you may want to add an “HoldRequest” when any

alarm of the unit or its control modules gets activated. Of course, this depends on the situation, and you may

want to adjust this condition to fit your needs. This should be implemented after all phases, at the bottom of the

Unit Function.
NETWORK

TITLE =End of Phases

END: SET ;

NETWORK

TITLE =unit hold

 U "Watchdog"; //if we have an Elapsed Watchdog alarm.

 O "Bx Alarm Group D".Unit[4].GAl; //if any Control module has an error.

 UN "Step0"; //Ignore if we are in Start position

 S "HoldReq"; //Stop the unit and put it into Hold

BatchXpert Engineering 164/283

Querying the Unit´s current Recipe
From the “Current Unit Data block” (DB100) you only have access to the current steps parameter declarations and

nominal values. If you want to query future recipe steps, you can use one of the provided system functions, that

allow you to query the recipe steps that are currently scheduled for execution in the recipe.

Please refer to the “Common Help functions” for more information.

BatchXpert Engineering 165/283

Examples
Heating up to set Temperature.
NETWORK

TITLE =phase 07: heat up

X007: SET ;

 CALL "Tec Heat Control 2 Point" (

 CurrTemperature := "Uxx".Para[11].Val,

 SPTemperature := "Uxx".Para[11].Sp,

 PreTemperature := "Uxx".Para[12].Sp,

 SPPulseTime := "Uxx".Property[3],

 SPPauseTime := "Uxx".Property[4],

 HeatRequest := #HeatReq,

 TimerMemory := #User.Heating_HV);

// actuators

 U "PH";

 S #Agitator;

// start Lauter Tun

 U #User.SugarTested;

 S "Bx UnitCom D".U.Slave1.Start;

// phase end contition

 L "Uxx".Para[11].Val;

 L 2.500000e-001;

 +R ; //If the Current value is close to the Nominal

 L "Uxx".Para[11].Sp;

 >R ;

 O "Uxx".Para[11].D; //or the temperature is already exceeded

 = "PhaseEnd";

 SPA END;

Wait until Timer is done.
NETWORK

TITLE =phase 08: rest

X008: SET ;

 CALL "Tec Heat Control 2 Point" (

 CurrTemperature := "Uxx".Para[11].Val,

 SPTemperature := "Uxx".Para[11].Sp,

 PreTemperature := "Uxx".Para[12].Sp,

 SPPulseTime := "Uxx".Property[3],

 SPPauseTime := "Uxx".Property[4],

 HeatRequest := #HeatReq,

 TimerMemory := #User.Heating_HV);

// actuators

 U "PH";

 S #Agitator;

// phase end condition

 U "PA";

 S "Uxx".Para[2].S;

 U "Uxx".Para[2].D;

 = "PhaseEnd";

 SPA END;

BatchXpert Engineering 166/283

Transfer until empty.
//Special Function in Primary Processing

 U "PFCycle"

 S "Cnt". Cnt[2]. Reset Counter Reset

//Actuator Control

 U "PH"

 S "Act". Act[12]. Aco Activates the actuator in automatic mode

 S "Act". Act[13]. Aco

 S "Act". Act[14]. Aco

 S "Act". Act[18]. Aco

/End the step

 U "DIn". DIn[17]. Sig //LSL

 = "PhaseEnd" //End of step

Operator request and Step on when operator Confirms.
//Request operator by putting the Unit into “Request Operator”

 U "PH"

 S "OpReq"

 U "OperatorOK" //if the operator clicks on the unit, he confirms the operator request

 S "PhaseEnd"

//Hold unit if we are waiting too long, or an error happened

 U "Act". Act[12]. Gals

 O "Cnt". Cnt[2]. Gals

 O "Watchdog"

 S "HoldReq"

Dosing an Additive with a Pump
NETWORK

TITLE =phase 10: Dosing Additive

X010: SET ;

//Heating

 CALL "Tec Heat Control 2 Point" (

 CurrTemperature := "Uxx".Para[11].Val,

 SPTemperature := "Uxx".Para[11].Sp,

 PreTemperature := "Uxx".Para[12].Sp,

 SPPulseTime := "Uxx".Property[3],

 SPPauseTime := "Uxx".Property[4],

 HeatRequest := #HeatReq,

 TimerMemory := #User.Heating_HV);

// actuators

 U "PH";

 S #Agitator;

 S "Bx Act D".Act104.ACo;

 U "Uxx".Para[2].D; //After the Initial delay timer has elapsed.

 U "PH";

 S "Bx Act D".Act105.ACo; //Request Dosing Pump

// phase end condition

 U “PA”;

 S “Uxx”.Para[2].S; //Start Dosing initial delay timer.

 U "Uxx".Para[2].D; //After the initial delay

 U "PA";

 S "Uxx".Para[3].S; //We start the Dosing timer and leave it started.

 UN "Bx Act D".Act104.On; //if the Agitator does not run, for some reason.

 O "Uxx".Para[2].D;

 U "PA";

 = "Uxx".Para[2].H; //We put the Initial Delay timer to “Hold”, so it pauses

 UN "Bx Act D".Act105.On; //if the dosing pump does not run, for some reason.

 U "PA";

 = "Uxx".Para[3].H; //We put the dosing timer to “Hold”, so it pauses

 U "Uxx".Para[3].D; //if the dosing time es reached

BatchXpert Engineering 167/283

 U "Uxx".Para[3].S;

 = "PhaseEnd"; //We finish the step

 SPA END;

Prepare dosing and Handle Material modules.

NETWORK

TITLE =phase 11: Prepare Dosings

X011: SET ;

//user Message

 U "PA";

 S "OpReq";

//Heating

 L 0.000000e+000;

 T "Uxx".Para[3].Sp;

 CALL "Tec Heat Control 2 Point" (

 CurrTemperature := "Uxx".Para[11].Val,

 SPTemperature := "Uxx".Para[11].Sp,

 PreTemperature := "Uxx".Para[12].Sp,

 SPPulseTime := "Uxx".Property[3],

 SPPauseTime := "Uxx".Property[4],

 HeatRequest := #HeatReq,

 TimerMemory := #User.Heating_HV);

// activate material moduls

 UN "PFCycle";

 SPB fc11;

//if the Dosing is requested in from the recipe, then we request the operator to confirm the Material

//Module

 L "Uxx".Para[31].Sp;

 T "Bx MM D".Mat21.Val; //Mash Tun - Additive 1

 L 0.000000e+000;

 >R ;

 S "Bx MM D".Mat21.OPReq; //Mash Tun - Additive 1

 L "Uxx".Para[32].Sp;

 T "Bx MM D".Mat22.Val; //Mash Tun - Additive 2

 L 0.000000e+000;

 >R ;

 S "Bx MM D".Mat22.OPReq; //Mash Tun - Additive 2

 L "Uxx".Para[33].Sp;

 T "Bx MM D".Mat23.Val; //Mash Tun - Additive 3

 L 0.000000e+000;

 >R ;

 S "Bx MM D".Mat23.OPReq; //Mash Tun - Additive 3

fc11: SET ;

BatchXpert Engineering 168/283

Unit Status Signals: “Phase Active”

As mentioned before, the “BatchXpert” framework provides many status signals that you can and should use

when implementing your unit phases inside your unit function code. All the following Signals are only valid inside

a Unit FC and apply to all units always to the one where the Unit FC belongs to.

These signals are meant as “tools” that you can use to make implementing Unit Phases as easy as possible.

The most important Status signals are:
Symbol Address Remark

PhaseEnd M 4.7 phase end

PA M 5.0 phase active

PEH M 5.1 phase active with emergency hold function

PH M 5.2 phase active with hold function

PP M 5.3 phase active with pause function

PFCycle M 5.6 phase first cycle

PLCycle M 5.7 phase last cycle

Phase Active
In “BatchXpert” the “PA” signal is basically always true and is never false during the execution of your Unit phases

in your function code. Different systems my implement a function where this phase active signal goes to false

when “PhaseEnd” gets signaled. “BatchXpert” Does not put face active to force when the phase end signal gets

triggered.

This sometimes has implications if you are setting memory variables inside your face logics, which would then be

“Frozen” if your step is not executing anymore.

Phase Last Cycle
For this the framework provides the “PLCycle” and “PFCycle”. When phase end gets triggered, your faces will get

executed one last time with the “PLCycle” signal to true to signal that this is the last phase cycle of your steps in

this step. If you want signals to get reset when you exit faces you should use the “PLCycle” signal.

Phase First Cycle
The first cycle signal is basically the opposite and gets through the first time a new step or phase is run. You

usually want to use this signal if you have some initializations to do on your Phase, such as resetting counters,

resetting signals or doing some initial calculations.

Phase Hold and Phase Pause
The Phase hold and Phase pause signals are basically the same as the phase active signal but are only true if your

unit is not in hold or not in pause respectively.

This signal is usually used to turn on actuators which usually should turn off when you put your unit into hold. If

you put your unit into hold the face hold signal will get “False”, and thus deactivating all automatic controls of all

your actuators.

Prefer “BatchXpert Unit-to-Unit” communication
To avoid this problem entirely we recommend you use our Unit-to-Unit Communication, which is integrated into

the BatchXpert framework. This unit-to-unit communication framework implements proper “Command

BatchXpert Engineering 169/283

semantics” and resets all their commands cyclically, avoiding this problem altogether. BatchXpert is designed to

use this communication mechanism to send process signals between units and is thus the preferred method for

communication between multiple units.

Examples
NETWORK

TITLE =phase 07: heat up

X007: SET ;

// actuators

// These actuators will turn “Off” when your Unit will be set to “HOLD”

 U "PH";

 S “Bx Act D”.Act[123].Aco;

 S “Bx Act D”.Act[124].Aco;

 S “Bx Act D”.Act[125].Aco;

// These actuators will be “ON” regardless of Run/Pause/Hold of your unit

 U "PA";

 S “Bx Act D”.Act[133].Aco;

 S “Bx Act D”.Act[134].Aco;

 S “Bx Act D”.Act[135].Aco;

// These actuators will be “ON” only if your unit is in “Run”

 U "PP";

 S “Bx Act D”.Act[143].Aco;

 S “Bx Act D”.Act[144].Aco;

 S “Bx Act D”.Act[145].Aco;

// start Lauter Tun

 U #User.SugarTested;

 S "Bx UnitCom D".U.Slave1.Start;

// phase end contition

 L "Uxx".Para[11].Val;

 L 2.500000e-001;

 +R ; //If the Current value is close to the Nominal

 L "Uxx".Para[11].Sp;

 >R ;

 O "Uxx".Para[11].D; //or the temperature is already exceeded

 = "PhaseEnd";

 SPA END;

BatchXpert Engineering 170/283

What not to do
As stated above you should not set memory signals that are not explicitly marked as commands inside your Phase

logics, since they get frozen in the last state the PHASE was active
NETWORK

TITLE =phase 08: rest

X008: SET ;

//The “Uxx D”.User.b1 will be TRUE even after the phase is not active anymore, since PA is never FALSE

 U "PA";

 S “Uxx D”.User.b1;

// actuators

 U "PH";

 S #Agitator;

// phase end condition

 U "PA";

 S "Uxx".Para[2].S;

 U "Uxx".Para[2].D;

 = "PhaseEnd";

 SPA END;

Do this instead
NETWORK

TITLE =phase 08: rest

X008: SET ;

//The “Uxx D”.User.b1 will be FALSE the phase is not active anymore, since PA is never FALS”, but Phase

Last Cycle will be true before leaving the Phase and thus resetting the signal

 U "PA";

 UN “PLCycle”

 S “Uxx D”.User.b1;

// actuators

 U "PH";

 S #Agitator;

// phase end condition

 U "PA";

 S "Uxx".Para[2].S;

 U "Uxx".Para[2].D;

 = "PhaseEnd";

 SPA END;

Implement “Botec” behavior
In Contrast to the “BatchXpert” system, the “Botec” system from Krones put the “Phase Active” (SOPA) signals to

false during the last cycle. To implement this same functionality in “BatchXpert”, you can put the following Code

on top of your “Funcion Code” of your Unit Phases.

Put this in your First network of your Unit FC.
//This will set the “Phase Active” and “Phase Active hold” funcions to False during the last Cycle of

your Phase, same as Botec Systems

 U "PA";

 U “PLCycle”

 R “PA”;

 U "PH";

 U “PLCycle”

 R “PH”;

 U "PP";

 U “PLCycle”

 R “PP”;

BatchXpert Engineering 171/283

Subphases (Phases inside Unit Phases)

BatchXpert in and of itself does not support Subphases, which are Phases that are running inside of Phases. These

are most used in phases such as “rinsing”, where you could have sub-phases for each of the different rinsing

intervals, such as spray bowl, lateral inlet, lower inlet etcetera. Since BatchXpert does not support subphases,

there's no configure option in your batch configuration, and you must implement this sub-phase logic yourself in

the PLC.

To implement these, you basically must program a jump distributor inside of your existing processing phase.

However, keep in mind that these sub-phases will not be managed by BatchXpert and do not generate any patch

events and do not have dedicated statuses. You can, however, trigger a user batch event when you want an event

to be registered in the PLC. You can do this for example every time you change one of your sub-phases, you can

register and batch event manually.

To memorize the current executing sub phase of your unit phase, you will need one of your “User.Dint”, which are

found inside of your unit data block.

Sub-Phase memory
In order to know which current Sub-Phase is active in a Unit-Phase, we have to reserve a memory in our Unit

Data-block, which holds the current “sub-Phase”. You usually put this memory in the “UnitDb.User” section, as

shown below.

In the Example below we use the first “Dint”, “Dint0” in the “User” section of the unit data-block of Unit 7, DB107.

Sub-Phase Parameters
Since BatchXpert does not natively support “Sub-Phases”, you have to add all subphase parameters to the Unit

phase itself, and do not reuse sub phase parameters, but instead use one parameter for each sub phase

dependent parameter.

BatchXpert Engineering 172/283

Simple Sub-phase implementation that does not repeat.
In this example we implement a phase that internally runs through different sub-phases, and on the last sub-

phase it terminates the whole phase. Additional comments for description and explanation are maced with blue.

NETWORK

TITLE =phase 27: Rinsing and Circulate

//Rinsing Amount

//Here we do some standard phase logic

 U "PA"

 = "Uxx".Para[15].S

 UN "Bx Act D".Act136.On

 = "Uxx".Para[15].H

// phase end condition

//Since we want to end the Unit Phase when the last Sub-Phase ends,

//we do NOT signal the “PhaseEnd” here, but rather in the last sub-Phase

 CLR

 = "PhaseEnd"

//Here we put our sub-phase logic

//___

//Subphase Handling

//here we preset our “SubPhase” memory to point to the

//first subphase when whe enter the Phase.

//this ensures that the sub-phases always start at the

//first sub-phase

 U "PFCycle"

 SPBN x027

 L 1 //Subphase 1

 T #User.SubPhase

x027: SET

//here we build an “Jump distributor” similar to an

//Unit phase. Sepending on our “#User.SubPhase”

//we jump to the section of code where our logic lives

 L #User.SubPhase

 SPL e027

 SPA e027

 SPA a027

 SPA b027

 SPA c027

e027: L 1 //Subphase 1

 T #User.SubPhase

 SPA END

//Subphase 1 Filling with water

a027: SET

 U "PH"

 S "Bx Act D".Act136.ACo

//instead of ending, we write the next subphase number to our memory

//this will activate the next phase, the next plc cycle

 U "Uxx".Para[15].D

 SPBN END

 L 2

 T #User.SubPhase

 SPA END

BatchXpert Engineering 173/283

//Subphase 2 Circulate via lateral inlet

b027: SET

 U "PA"

 = "Uxx".Para[2].S

 UN "Bx Act D".Act62.On

 = "Uxx".Para[2].H

 U "PH"

 S "Bx Act D".Act139.ACo

 S "Bx Act D".Act141.ACo

 S "Bx Act D".Act62.ACo

 S "Bx Act D".Act132.ACo

//instead of ending, we write the next subphase number to our memory

//this will activate the next phase, the next plc cycle

 U "Uxx".Para[2].D

 SPBN END

 L 3

 T #User.SubPhase

 SPA END

//Subphase 3 Circulate via screen

c027: SET

 U "PA"

 = "Uxx".Para[3].S

 UN "Bx Act D".Act62.On

 = "Uxx".Para[3].H

 U "PH"

 S "Bx Act D".Act132.ACo

 S "Bx Act D".Act141.ACo

 S "Bx Act D".Act62.ACo

 S "Bx Act D".Act173.ACo

//Since we want to end the Unit Phase when the last Sub-Phase ends,

//we signal the “PhaseEnd” here

 U "Uxx".Para[3].D

 UN "PFCycle" //Jaime

 = "PhaseEnd"

 SPA END

BatchXpert Engineering 174/283

Sub-phase implementation that does repeat its subphases until the Unit Phase ends
In this example we implement a phase that internally runs through different sub-phases and starts again on the

first one, when the last one has ended. It does this until the Unit Phase itself has ended. Additional comments for

description and explanation are maced with blue.

NETWORK

TITLE =phase 27: Rinsing

//Rinsing Amount

//Here we do some standard phase logic, in this case our Rinsing Counter

 U "PA"

 = "Uxx".Para[15].S

 UN "Bx Act D".Act136.On

 = "Uxx".Para[15].H

// phase end condition

//If we decide to end the phase, we signal the Phase by “PhaseEnd”, just as

//on any other Unit Phase

 U "Uxx".Para[15].D //rinsing Ammount reached

 = "PhaseEnd"

//Here we put our sub-phase logic

//___

//Subphase Handling

//here we preset our “SubPhase” memory to point to the

//first subphase when whe enter the Phase.

//this ensures that the sub-phases always start at the

//first sub-phase

 U "PFCycle"

 SPBN x027

 L 1 //Subphase 1

 T #User.SubPhase

x027: SET

//here we build an “Jump distributor” similar to an

//Unit phase. Sepending on our “#User.SubPhase”

//we jump to the section of code where our logic lives

 L #User.SubPhase

 SPL e027

 SPA e027

 SPA a027

 SPA b027

 SPA c027

e027: L 1 //Subphase 1

 T #User.SubPhase

 SPA END

//Subphase 1 Sprayball 1

a027: SET

 U "PA"

 = "Uxx".Para[2].S

 U "PH"

 S "Bx Act D".Act136.ACo

//instead of ending, we write the next subphase number to our memory

BatchXpert Engineering 175/283

//this will activate the next phase, the next plc cycle

 U "Uxx".Para[2].D

 SPBN END

 L 2

 T #User.SubPhase

 SPA END

//Subphase 2 Lateral Inlet

b027: SET

 U "PA"

 = "Uxx".Para[3].S

 UN "Bx Act D".Act62.On

 = "Uxx".Para[3].H

 U "PH"

 S "Bx Act D".Act139.ACo

 S "Bx Act D".Act141.ACo

 S "Bx Act D".Act62.ACo

 S "Bx Act D".Act132.ACo

//instead of ending, we write the next subphase number to our memory

//this will activate the next phase, the next plc cycle

 U "Uxx".Para[3].D

 SPBN END

 L 3

 T #User.SubPhase

 SPA END

//Subphase 3 Lower Inlet

c027: SET

 U "PA"

 = "Uxx".Para[4].S

 UN "Bx Act D".Act62.On

 = "Uxx".Para[4].H

 U "PH"

 S "Bx Act D".Act132.ACo

 S "Bx Act D".Act141.ACo

 S "Bx Act D".Act62.ACo

 S "Bx Act D".Act173.ACo

//Since we want the sub-phaes to loop, we go back to the first sub-Phase, instead of the next one

 U "Uxx".Para[4].D

 SPBN END

 L 1 //Back to first sub phase

 T #User.SubPhase

 SPA END

 SPA END

BatchXpert Engineering 176/283

Recommendations when implementing a Phase

There are some recommendations you should consider and follow when implementing a Phase in a Unit. These

considerations are not unique to BatchXpert but are worth mentioning at this point, so you can make more

reliable applications.

Phases should be independent from each other.
You should never have implicit dependencies between two Phases of a Unit. For example, consider that we have

an “Filling” phase, where we are setting an “Product in Tank” bit somewhere in the plc. When we reach the

“Emptying to Drain” step, we reset the “Product in Tank”. And let us say that this “Product in Tank” bit will block

you from filling it up again.

Now consider that the operator can rearrange and even remove steps and phases from the recipe as he chooses.

Now the operator does not want to “Empty to Drain” anymore to optimize product losses and removes the phase

from the recipe. This now means, that there is no possibility anymore for the “Product in Tank” to get reset.

Do not depend on a Specific Phase “being there”
Remember, the operator can remove any step he wishes. For example, consider that you have two Units that

transfer from one to the other.

Unit 1 enters in “Transfer” which causes Unit 2 to enter “Filling”. Unit 2 will end “Filling” when Unit 1 sends the

“TransferDone” signal. Unit 1 sends this “TransferDone” signal in the “Rinsing to Drain” step at the end of the

recipe.

What happens if the operator decides to remove the “Rinsing to Drain” step? In that case, Unit 1 will never send

“TransferDone” to Unit 2, which will never leave “Filling”.

Rather than depend on the “Rinsing to Drain” phase to set the “TransferDone”, you should send an

“TransferActive” signal in all phases where a Transfer is in progress. If this “TransferActive” becomes FALSE, Unit 2

can finish “Filling”. This way you are not dependent on any step.

Do not confuse this solution with the “Transfer” and “Filling” steps, which are a little exception to this rule.

Do not make Phases dependent on previous Phases.
Since phases may be ordered in any order the operator wishes, or not even be in the recipe at all, you should not

assume that a specific Phase has been executed when a Phase executes.

Make Discrete phases, not Super “do it all” phases.
Usually, it is better to model your process in smaller discrete steps, instead of having an “Active” step, that just

does everything. Of course there are exceptions to this, but you should strive for Phases that to one thing, and

one thing only.

Consider Error Conditions.
When implementing Phase logic, you should always consider the possibility of some error happening. Your Phases

should always react in a predictable and save manner to errors generated by control modules.

A phase should always expect critical control modules alarms, and should thus always move to a save

configuration if an error happens.

BatchXpert Engineering 177/283

Most of the time it is sufficient to “Hold” a phase if a Control module alarm activates, since this usually

deactivates all Automatic controls of your Actuators.

However, sometimes you will have to implement special logic to take these failure conditions into account.

Confirm Dosing whenever possible.
Sometimes you need to measure ingredients into your process. You should always try to measure and confirm the

dosage, and NEVER assume that a product enters your Batch, only because you activated an Actuator. After all, an

Actuator may fail and not open properly.

If you do not have totalizer, flow sensor or similar, you must use “Time” to calculate the amount of dosage. In

that case you should only be able to count when all valves and pumps are confirmed running.

//Activate the time permanently, so it does not get reset

 U "PA"

 S “UxxD”.Para[10].S

//But only allow counitng if the Valve is confirmed open

 UN "Act". Act[13]. ON

 S “UxxD”.Para[10].P

Always Initialize and De-initialize your Phases
If you are implementing phases that use “Help” buts, especially in the “UxxD”.User section, you must be aware

what value these variables may heave when entering the step. To ensure a consistent Execution of your phase,

you should always initialize your signals and values when entering the phase (PFCycle) and when exiting the Phase

(PLCycle).

//Preset Help signal when starting phase and also when exiting

 U "PFCycle"

 O “PLCycle”

 R “UxxD”.User.HelpBitLevelReached

//Tank is full

 U “Bx DInD”.Din[124].Sig //Full signal

 R “UxxD”.User.HelpBitLevelReached

//Tank is empty

 U “Bx DInD”.Din[123].Sig //Empty signal

 S “UxxD”.User.HelpBitLevelReached

//Refilling of Tank

 U “UxxD”.User.HelpBitLevelReached

 S "Act". Act[13]. Aco

BatchXpert Engineering 178/283

Unit Properties

Each unit can have properties, which are values that are “static”, and do not change depending on the executing

recipe. These “Properties” are meant for configuration of the equipment, for example “Lauter tun diameter”,

“Overflow Pipe Height”, “Pushout volume” and such. Parameters that are equipment dependent, but not recipe

dependent.

Configuration
The configuration of unit properties is done at the class level in the configuration editor, similarly to the

parameters of a Phase, but since they do not belong to a phase, the configuration is done one hierarchical level

above.

Faceplate
Unit properties are available from the properties window that is available from the “Process detail windows.

BatchXpert Engineering 179/283

Programming Examples
Calculate push out amount from properties.
 L “Uxx”.Para[11].Val //Pushout volume offset from Recipe

 L "Uxx".Property[2] //Pushout volume from Properties as fixed value

 +R

 T "UnitCom". U.Val1 //Total pushout needed

BatchXpert Engineering 180/283

 Unit Status

Each unit in BatchXpert automatically incorporates Hygienic state management. It can have the following

statuses:

• Without CIP

• CIP elapsed.

• With CIP

Each of the hygienic status will automatically downgrade after set amounts of time. Additionally, there is also the

status “Request CIP” where you can input a set amount of production that can run through a unit until it

“Requests CIP”, which means that it must realize CIP before continuing.

Implementation in a Unit
The Unit itself detects when it is running production or a CIP recipe. It does this

by monitoring the for changes in the Hygienic state. We recommend that you

always put the “Unit Status” step into every unit, so you have a way to set the

Hygienic state from a recipe when an CIP has finished.

On every CIP recipe you should put the following steps at the end

Faceplate

BatchXpert Engineering 181/283

Starting a unit with an existing or new Batch

For any units to execute and recipe, you must start corresponding united with an existing Batch or Start a new

Batch. New Batches are usually started by the operator via the Graphical user interface.

Prid
Each batch is identified by a unique “Process Identifier” or “Prid”. Each process that has the same PRID belong to

the same Batch. The PRID is unique between all processes, even between different PLCs. The BatchXpert PLC

frame includes functionality to ensure uniqueness of the Prid for up to 8 PLCs connected to the system.

Manually starting a New Batch
To start a recipe or program on a Unit, you must click your mouse on the recipe name box in the drive symbol.

This opens the recipe start window, where you can choose the recipe, you want to start. For a prescription to be

initiated, the unit must be in the "Automatic" state.

This will assign a new PRID to the selected unit and thus start a new Batch.

Starting a unit from the PLC
BatchXpert provides multiple Helper functions to start a specific unit from the PLC. This usually happens if a

previous unit wants to start the next unit to continue the process in this new unit.

The starting logic of a Unit is usually done in the “Start Position” of the unit that is going to be started. Usually,

the Unit that tries to start the unit, will send some “signal” which in turn calls the appropriate functions in its start

position.

Of course, it is also possible to implement any other custom logic to initiate new or existing batches.

At its most basic level, you have to supply a Program number, a PRID and then set the PhaseEnd signal in a Unit,

to initiate a new Unit start. There are multiple different functions to either initiate a new batch or continuing an

existing batch.
NETWORK

TITLE =phase 01: start position

X001: SET ;

 L #ProgNo //Try to start the requested recipe.

 T "Uxx".U.ProgNo

 L #Prid

 T "Uxx".U.PrId //trigger an existing Prid a new recipe being downloaded

 SET

 S "PhaseEnd"

 SPA END;

BatchXpert Engineering 182/283

If no existing Prid is provided, a new Prid is automatically assigned and a new batch is initiated, since a new PRID

is being created.

NETWORK

TITLE =phase 01: start position

X001: SET ;

 L #ProgNo //Try to start the requested recipe.

 T "Uxx".U.ProgNo

 //No prid is being assigned, so a new Prid will be generated and used

 SET

 S "PhaseEnd"

 SPA END;

What happens after starting a unit

When a new Program number is being written to the “Uxx".U.ProgNo” variable, a new Recipe download is being

triggered by the Unit from the currently active recipe master. This recipe download may take a few seconds,

which means that a Unit may not leave the start position as soon as “PhaseEnd” is set, but rather when the recipe

is requested, downloaded and validated by the Unit.

Keep in mind that this process may take a few seconds.

Starting a unit with a new Batch from the PLC

There are system functions to facilitate the startup of new batches or existing batches by any logic you wish to

include.

NETWORK

TITLE =phase 01: start position

X001: SET

 CALL "Bx StartNewBatch"

 Start :="Custom logic Signal"

 ProgNo:="Program number you wish to start"

Starting a unit with an existing Batch from the PLC

There are system functions to facilitate the startup of new batches or existing batches by any logic you wish to

include.

NETWORK

TITLE =phase 01: start position

X001: SET

 CALL "Bx StartExistingBatch"

 Start :="custom start signal"

 ProgNo:="The program number you wish to start"

 Prid :="The PRID of the existing Process"

BatchXpert Engineering 183/283

If you are using integrated Unit-To-unit communication, then you can use the following helper method

NETWORK

TITLE =phase 01: start position

X001: SET

 CALL "Bx StartBatchFromMaster"

 Release:=TRUE

 Master :="Bx UnitCom D".Master1

BatchXpert Engineering 184/283

Shared process Resources

Sometimes you will encounter processes that share

certain equipment but cannot use said equipment at

the same time. In Process technology this may often

happen with water supply lines. Here often you can see

that you have one totalizer in a water supply line, and

multiple consumers. If we want to accurately totalize

the amount of water going to each consumer, we must

make sure that only one consumer is using the totalizer

at any given moment. Otherwise, we cannot know how much water went to the first consumer and how much

water to the second, as the water will never distribute itself evenly to all consumers.

Mutexes
Mutexes are an algorithm in programming to protect a resource, in this case the totalizer, from simultaneous

usage. They ensure “Mutual Exclusivity”, hence their name. The concept of Mutexes is, that the resource (in our

case the totalizer) has an “owner” who is allowed to use it, and only when the current owner releases the

resource, the next consumer can claim it and use it if he successfully allocated this resource.

Mutexes may also have “Priorities”, which translates very well to a process environment, since there may also be

consumers that have higher priority than others.

This means Mutexes are a perfect way, in fact the ideal way, to manage this problem.

Programming Examples
BatchXpert comes with two default implementations of Mutexes. A simple one, and one with support for

Priorities. Each Mutex requires some private data to manage access to its resources. This data should be kept in a

data block that you should create for this purpose.

BatchXpert Engineering 185/283

Simple Mutex to protect a shared process resource.

//Each requesting user must provide an “ID” to identify each of the requests and be

//able to assign the resource to one of them. The ID must be unique between all

//the requests. In this example we simply use the “Unit Number” as ID

//request from Mashtun

 "U004 MT data".user.ReqWater

 = #Request

 CALL "Mutex"

 Alloc :=#Request

 ID :=4 //Unit Number of Consumer as unique ID

 AllocationOK :=#AllocationOK //The Resource can be used

 AllocationFailure:=#AllocationFailure

 ProcessResource :=”Process Mutex D”.WaterMixer2

 U #Request //if this consumer is requesting

 U #AllocationOK //and has acquired (allocated) the Mutex

 S “Bx Act D”.Act22.Aco //it may use the Water valve

//request from Lauter tun

 "U005 LT data".user.ReqWater

 = #Request

 CALL "Mutex"

 Alloc :=#Request

 ID :=5 //Unit Number of Consumer as unique ID

 AllocationOK :=#AllocationOK

 AllocationFailure:=#AllocationFailure

 ProcessResource :=”Process Mutex D”.WaterMixer2

 U #Request

 U #AllocationOK

 S “Bx Act D”.Act22.Aco

//request from Wortkettle

 "U006 WK data".user.ReqWater

 = #Request

 CALL "Mutex"

 Alloc :=#Request

 ID :=6 //Unit Number of Consumer as unique ID

 AllocationOK :=#AllocationOK

 AllocationFailure:=#AllocationFailure

 ProcessResource :=”Process Mutex D”.WaterMixer2

 U #Request

 U #AllocationOK

 S “Bx Act D”.Act22.Aco

BatchXpert Engineering 186/283

Advanced Mutex with priority

//Each requesting user must provide an “ID” to identify each of the requests and be

//able to assign the resource to one of them. The ID must be unique between all

//the requests. In this example we simply use the “Unit Number” as ID

//

//Additionally, the Priority can be specified. The higher the number, the higher

//the Priority. Higher priority requests can interrupt lower priority ones.

//

//In this example, the Mash tun has a higher priority than the others, thus will

//always acquire the Mutex first, and even “steal” the mutex from requests that

//already acquired the mutex.

//request from Mashtun

 "U004 MT data".user.ReqWater

 = #Request

 CALL "Mutex Ex"

 Alloc :=#Request

 ID :=4 //Unit Number of Consumer as unique ID

 Priority := B#16#2 //The higher number is higher priority

 AllocationOK :=#AllocationOK

 AllocationFailure:=#AllocationFailure

 ProcessResource := ”Process Mutex D”.WaterMixer1

 U #Request //if this consumer is requesting

 U #AllocationOK //and has acquired (allocated) the Mutex

 S “Bx Act D”.Act22.Aco //it may use the Water valve

//request from Lauter tun

 "U005 LT data".user.ReqWater

 = #Request

 CALL "Mutex Ex"

 Alloc :=#Request

 ID :=5 //Unit Number of Consumer as unique ID

 Priority := B#16#1 //The higher number is higher priority

 AllocationOK :=#AllocationOK

 AllocationFailure:=#AllocationFailure

 ProcessResource := ”Process Mutex D”.WaterMixer1

 U #Request

 U #AllocationOK

 S “Bx Act D”.Act22.Aco

//request from Wortkettle

 "U006 WK data".user.ReqWater

 = #Request

 CALL "Mutex Ex"

 Alloc :=#Request

 ID :=6 //Unit Number of Consumer as unique ID

 Priority := B#16#1 //The higher number is higher priority

 AllocationOK :=#AllocationOK

 AllocationFailure:=#AllocationFailure

 ProcessResource := ”Process Mutex D”.WaterMixer1

 U #Request

 U #AllocationOK

 S “Bx Act D”.Act22.Aco

BatchXpert Engineering 187/283

Recipe Options

When you start a recipe from the Production scheduler, you can define recipe options for each Recipe

individually. Recipe options represent settings that the operator wants to do for a single Batch only, but not for all

batches running a particular recipe. This for example applies to situations where you have an option called “Last

Brew” where you can mark the “Last brew” of the week, so you can take certain actions in the plc, like for

example not recovering weak wort, or waiting with spent grains removal until you can add Trub to the lauter tun.

The Recipe options are configured for each recipe in the Bach configuration as follows.

Start Option Value
In the PLC they get downloaded as Recipe options into the recipe and are available in the structure

“ReipeOptions” in the unit data block.

Address Symbol Type Remark

0.0 b24 BOOL start option bit

0.1 b25 BOOL start option bit

0.2 b26 BOOL start option bit

0.3 b27 BOOL start option bit

0.4 b28 BOOL start option bit

0.5 b29 BOOL start option bit

0.6 b30 BOOL start option bit

0.7 b31 BOOL start option bit

1.0 b16 BOOL start option bit

1.1 b17 BOOL start option bit

1.2 b18 BOOL start option bit

1.3 b19 BOOL start option bit

1.4 b20 BOOL start option bit

1.5 b21 BOOL start option bit

1.6 b22 BOOL start option bit

1.7 b23 BOOL start option bit

2.0 b08 BOOL start option bit

2.1 b09 BOOL start option bit

2.2 b10 BOOL start option bit

2.3 b11 BOOL start option bit

2.4 b12 BOOL start option bit

2.5 b13 BOOL start option bit

2.6 b14 BOOL start option bit

BatchXpert Engineering 188/283

2.7 b15 BOOL start option bit

3.0 b00 BOOL start option bit

3.1 b01 BOOL start option bit

3.2 b02 BOOL start option bit

3.3 b03 BOOL start option bit

3.4 b04 BOOL start option bit

3.5 b05 BOOL start option bit

3.6 b06 BOOL start option bit

3.7 b07 BOOL start option bit

4.0 Val1 REAL start option value

8.0 Val2 REAL start option value

12.0 Val3 REAL start option value

16.0 Val4 REAL start option value

20.0 Val5 REAL start option value

24.0 Val6 REAL start option value

28.0 Val7 REAL start option value

Programming Example
Using a start option bit in the Unit Function. You should read the option bits and then make temporary variables

out of them at the beginning of the unit function.
 U "Uxx". StartOption.b01

 = #WeakWort //option 1 = with weak word

 U "Uxx". StartOption.b02

 = #Trub //option 2 = With trub dosage

BatchXpert Engineering 189/283

Run and Hold timers.

BatchXpert provides timer counter that give you time in seconds how long the Unit already has been in Hold or in

Run, or how long the current step is already executing. This is especially useful in situation where you want to

keep certain actuators running when a unit is “Holding”, in other words, with these counters you can easily

implement an “Holding” transitional state when going from “Run” into “Hold.”

Step Time in "RUN"
Address in Unit DB Symbol Datatype Comment
32.0 THold REAL time Unit in hold

Time in seconds, the unit is in “Hold”
36.0 TRun REAL time unit in run

Time in seconds, the unit is in “Run”
40.0 TStepRun REAL time step in run

Time in seconds, the current Phase is executing
44.0 TRecDownLoad REAL time recipe Download.

Time in Seconds, since the recipe was downloaded

Programming Example

The following example shows a simple two stepped shutdown. If the unit is switched to stop, either by an

“HoldReq” or by the operator, the actuators 12 and 13 are turned off immediately. Actuator 18 keeps running for

10 seconds and Actuator 19 keeps running for 15 seconds.
 U "PH"

 S "Act". Act[12]. Aco

 S "Act". Act[13]. Aco

 L "Uxx". U.THold

 L 1.000000e+001 //10 seconds

 <R

 S "Act". Act[18]. Aco //keep running for 10 seconds when in hold

 L "Uxx". U.THold

 L 1.500000e+001 //15 seconds

 <R

 S "Act". Act[19]. Aco //Keep running for 15 seconds when in hold

BatchXpert Engineering 190/283

Event recording

One of the main functions of BatchXpert is its ability to record historical events from batches, but also events and

operations that were executed on any Control module of the system. It must be noted that all historical events

are created by the PLC, not the operating stations, so they do not depend on any operating station. This way HMI

touch panels, which do not execute VisXpert SCADA, can operate modules and since the plc creates all historical

events, these are still recorded.

What is being recorded for Batches?
Every Batch creates a batch event when one of the following events occur.

• Status Changed, wither switched to Run, pause or Hold, by either the Operator or internally in the PLC.

• The step was finished automatically.

• The step was aborted by Step+ or Step- from the operator.

• The PLC triggered an event by sending the “ProtWrite M4.3” from a Unit function.

Every time an Event is created, the status of all 16 parameters is being sent to the operating stations master’s so

they can record all the data into the database.

This creates an “Event Timeline” of all events that happened in relation to a single batch and allows the “Batch

Report Viewer” to visualize this information so the operator can reproduce what happened in a single batch.

What is being recorded for Control Modules?
All control modules will create an “Manual Operation” event whenever one of the following events happens.

• A Control modules Status such as “Simulation”, “Ignore” or “Auto” or any other status is changed.

• A control modules Parameters such as “On Dealy”, “Off Delay” or “Alarm Delay” or any other parameter is

changed.

• A control module’s alarm is confirmed.

Every time a control module observes a status or parameter change, it will record this change with the following

data is recorded:

• Event Type

• Old Value and New Value

• Control Module Type

• Control Module Number

• Operating Station on which the operation happened.

• User who executed the operation

Master to Operating station communication channels
All recording is being done in the plc by the BatchXpert system. Every time and module or unit registers an event,

it will be enlisted into the communication buffers for each of the connected “BatchXpert” operating stations

configured as Masters. The buffers are independent to each BatchXpert master and designed to be “First in First

out”. The BatchXpert operating station master’s will periodically read their own buffer status and upload events if

they exist. The buffers in the PLC can typically hold about 1000 events, which depending on your process and size

of the implementation is good for about a few days’ worth of data.

BatchXpert Engineering 191/283

If an BatchXpert Master is not able to empty the buffer in time, for example it is turned off, a buffer overflow

happens, and the oldest events get overwritten. However, this will only affect the Master that was turned off, as

each master has its own independent buffer.

Each BatchXpert Master station has its own Communication channel that includes its own independent Event

buffer in the PLC. So that faults of one operating station can never affect other operating stations.

How is the historical data being stored?
All historical data is uploaded from the event buffers of each of the BatchXpert masters through the Masters

communication channel. It is then sent to the SQL server, where the raw data is resolved, and the resolved usable

data is stored in the appropriate tables.

The SQL server will resolve data in real time when it receives a new event from the PLC. This data resolution and

recording usually takes less than a second, which means that recorded data is available in the database in near

real time on the SQL server. It should be noted that the timestamp of the event is put on the event in the plc

when the events happened, not when the SQL server observed the event.

What Time resolution do the events have?
The events have a maximum Time resolution of 1 second.

Batch Configuration Audit trail.
Whenever some value in the Configuration database is changed either from the Batch Configuration application

or by other means, an historical record is created that stores what was changed, and what the original value was.

These recordings extend to configuration changes, Recipe changes, recipe parameter changes and changes in the

configuration of control modules.

The “Batch Configuration Auditing Trail” is doing all of this. This system is described in depth in the manual

“Manual BatchXpert Database Audit trail”.

BatchXpert Engineering 192/283

Unit-to-Unit Communication

One of the most challenging parts of process automation is the synchronization between multiple units that

participate in a process cell. This usually involves the sending and coordination of signals sent between the

participating units, so they can coordinate their phases, activate actuators appropriately and terminate their

phases in a coordinated manner.

BatchXpert provides an elaborate mechanism to implement easily and safely these kinds of communication

channels in your plc application.

Simple Process Example

A common example of these communication channels between units is product transfer. This usually involves an

origin tank and a destination that receives the product. Each of the two parts is represented by its own Process

Unit.

BatchXpert Engineering 193/283

More Complex Example

However, for more advanced communication scenarios that involve more than two units, the communication is

not as straight forward anymore and requires the application of programming principles to be able to write

applications that are readable and safe.

Dynamic communication partners
For some processes it may additionally be necessary to be able to communicate with multiple partners,

sometimes at the same time.

An example of this would be any transfer into a “Tank farm”, such as wort cooling into a fermenting cellar. In this

example the transferring Unit, the wort cooler, needs to communicate with any of its destination units, the

fermenting tanks.

Interfaces
The solution to these problems is “Interfaces”. These define a precise set of signals that each unit must

implement and since every unit must implement these signals in the same way as any other unit, they are

interchangeable. This means that each unit can consume and produce the same interface.

BatchXpert Engineering 194/283

Interfaces should be as generic as possible and never contain any Unit specific information. This is usually

reflected by the naming of the signal names. These must be as generic as possible and never reference any unit

specific details. If an interface references unit details, it is not interchangeable with other units anymore, that may

not implement this specific detail.

 You should never have signals such as “X1105V32_Aco” in any interface because this signal references a specific

actuator of one specific unit and is not generic and not interchangeable with other units anymore.

BatchXpert provides a default implementation that should be used for all unit-to-unit communication and is

optimized for “Process transfers” that cover all types of transfers with optional push outs. The interfaces are

generic on purpose and should not be changed to fit a particular unit, since this would defeat the purpose of

interfaces.

Process Unit Allocation
Another consideration that is included in the BatchXpert implementation is the concept of “Unit Allocation”. This

means that two units that are communicating are “occupied” by each other, so that no other unit can utilize their

communication channel. This is like “Mutex” explained above but additionally serves the purpose of ensuring that

a unit communication cannot be interrupted from another unit, requesting the same communication channel.

Once a communication channel has been established, both units are occupied by each other, and any further

attempt to establish a communication channel from other units will fail.

This ensure that no data is ever overwritten, or two units compete for signals. This avoids “Race conditions” and

mixing of different Batches.

Naming Convention
BatchXpert uses the “Mater/Slave” nomenclature for its implementation of “Unit-to-Unit” communications. An

“Master” is defined as the unit that establishes the communication link and chooses its “Slave”. The “Slave” is the

recipient of an “Master’s” communication request. The Slave will automatically accept the request if another does

not yet occupy it “Master”.

In summary:

• Master = the one that establishes the Communication Link

• Slave = the target of the communication Link

All data that a Unit sends to its communication partner is inside the “UnitCom.U.Master1” structure and all data

that is coming from all slaves and masters is inside the “UnitCom.Master1” structure. The sending data is

indicated by “.U.”.

An example:

• UnitCom.U.Master1.xxx Current Unit Signals sent to Master 1

• UnitCom.Master1.xxx Signals received from Master 1

• UnitCom.U.Slave1.xxx Current Unit Signals sent to Slave 1

• UnitCom.Slave1.xxx Signals received from Slave 1

• For Master 2 to 4, or slave 2 to 4, the same applies.

BatchXpert Engineering 195/283

Example of Naming Convention
If we have an “Mash tun” and a “Lauter tun”, and the mash tun wants to transfer into the lauter tun, the mash
tun would be the master that establishes its connection by defining to which “Slave” it wants to communicate.

• Mash tun = Master

• Lauter tun = Slave

The mast tun selects the lauter tun as Slave 1, so that its data is sent to the first communication channel.

• If the Mash tun wants to send a signal to the lauter tun, it would do so in “UnitCom.U.Slave1.xxx”

• If the Mash tun wants to read a signal from the lauter tun, it would need to use “UnitCom.Slave1.xxx”

• If the Lauter tun wants to send a signal to the mash tun, it uses “UnitCom.U.Master1.xxx”

• If the Lauter tun wants to read a signal from the mash tun, it uses “UnitCom.Master1.xxx”

Data Transfer diagram with between two Units
This diagram illustrates this data transfer between the two communication partners in a simple “Master to Slave”
communication channel.

BatchXpert Engineering 196/283

Data Transfer diagram with between three Units
This diagram illustrates the data transfer between the three communication partners. Where one master
communicates with two slaves at the same time. This may for example be the case for the “Wort cooler,” “Wort
line” and “Yeast dosing Line”.

BatchXpert Engineering 197/283

Data layout
The data is laid out in the communication data block as follows:

Address Symbol Type Comment

This is the “U” area, meaning the data that is sent from the unit to the Slaves/Maters

0.0 U.General STRUCT This data is written automatically, and holds data form
the current unit.

4.0 U.PrId DINT

8.0 U.Charge DINT

12.0 U.ProgNo DINT

16.0 U.Master1 UnitComPartnerOwn The data signals sent to the Respective Master and
slaves. It holds the signals defined in the default
interface that is exchanged between each master and
slave

24.0 U.Master2 UnitComPartnerOwn

32.0 U.Master3 UnitComPartnerOwn

40.0 U.Master4 UnitComPartnerOwn

48.0 U.Slave1 UnitComPartnerOwn

56.0 U.Slave2 UnitComPartnerOwn

64.0 U.Slave3 UnitComPartnerOwn

72.0 U.Slave4 UnitComPartnerOwn

80.0 U.Val1 REAL This is a list of arbitrary values that are being sent
to each master and slave. These are intended to
contain user specific data, such as flow rates,
volumes etc.

84.0 U.Val2 REAL

88.0 U.Val3 REAL

92.0 U.Val4 REAL

96.0 U.Val5 REAL

100.0 U.Val6 REAL

104.0 U.Val7 REAL

108.0 U.Val8 REAL

This is the area where a unit receives the data that it gets from its Masters/Slaves

200.0 Master1 UnitComPartner These are the interface signals that are received from
the current unit from its masters and slaves 300.0 Master2 UnitComPartner

400.0 Master3 UnitComPartner

500.0 Master4 UnitComPartner

600.0 Slave1 UnitComPartner

700.0 Slave2 UnitComPartner

800.0 Slave3 UnitComPartner

900.0 Slave4 UnitComPartner

BatchXpert Engineering 198/283

The default signals defined in the Interface
Symbol Data type Description
TransReq BOOL transfer request

Indicates to the communication partner that the unit wants to do a Transfer. This is
usually set in the “Wait for Transfer” phases. It does not mean that a Transfer is
already running, although it may be active during the actual transfer as well.

TransActive BOOL transfer active
Indicates to the communication partner that the Transfer is taking place, and the
transferring unit is in the “Transfer” step.

TransEnd BOOL transfer end
Indicates to the communication partner that the transfer should finish. It should not
be used as a signal to send the receiving unit into its next step, because of the
arguments made in Do not depend on a Specific Phase “being there”

TransRel BOOL transfer release control
Indicates to the communication partner that the other unit may activate its
actuators. It is usually associated with the units Run/Hold Status and with Feedback
of valves.

FillReq BOOL filling requested
Indicates to the communication partner that the units wants to be Filled. This is
usually set in the “Wait for Filling” phases. It does not mean that a Filling is already
running, although it may be active during the actual transfer as well.

FillActive BOOL filling active
Indicates to the communication partner that the Filling is taking place, and the
transferring unit is in the “Filling” step.

FillEnd BOOL filling end
Indicates to the communication partner that the Filling should finish. It should not be
used as a signal to send the receiving unit into its next step, because of the
arguments made in Do not depend on a Specific Phase “being there”

FillRel BOOL filling release control
Indicates to the communication partner that the other unit may activate its
actuators. It is usually associated with the units Run/Hold Status and with Feedback
of valves.

Connect BOOL Connected
Indicates to the Communication system that a connection to the unit indicated in
“No” should be initiated. This actually allocates the partner unit and transfers the
data. For Slaves it indicates if a master is connected.

Start BOOL start partner unit
Indicates to the communication partner that they should start up a recipe. This may
be the recipe of the communication partner or a new process entirely. This depends
on your implementation in the Unit Function.

OpenTank BOOL open tank / vessel
Open the Destination is requests

OpenDrain BOOL open drain
Opening the Drain is requested

Water BOOL Water
Water is currently arriving on the communication partner, or being sent to it

Product BOOL Product is currently arriving on the communication partner, or being sent to it
s16 BOOL
PrIdChange BOOL PrId change for partner

The partner should execute a PrId change
FunctionNo INT special function number

BatchXpert Engineering 199/283

This is a User defined “Function” code to trigger user defined action on either the
master or the slave, that then can be executed. You can interpret this either as an
integer value or as individual “bit” signals.

No DINT unit number master.
This is the Unit number of the communication partner. For masters this is the Unit
number that should be connected, and for slaves indicates the connected Master’s
unit number.

Custom signals
Custom signals should be sent through the “FuncionNo” integer. This way you can either send a number to trigger

action on the communication partner or treat this 16-bit integer as 16 individual bits.

For example, one could define the following table:

0 = no action

1 = This is the first Brew in the Tank

4 = This is the last Brew in the Tank

8 = Some other signal

This way you can easily send some specific signals between the communication partners.

On the sending unit, let us say the slave sends this to its master. On the Salve side you would write:
L 4 //This is the last Brew in the Tank

T “UnitCom”.U.Master1.FuncionNo //Send to Master

And on the Master side you would
L “UnitCom”.Slave1.FuncionNo //Receive from Slave

L 4 //This is the last Brew in the Tank

==I

… Do stuff

BatchXpert Engineering 200/283

Programming Examples

Connect with Slave

Communication can be established with a slave, if the slave's unit number is transferred, and the "Connect" signal

can be established. For most situation, the slave's unit number can be transferred statically, as this does not

change.

The slave unit number can also be dynamically assigned for example from a preselection system such as “Wort

cooler” selecting the Fermenting tank and similar.

 U "Step0"

 S "UnitCom". U.Salve1.Connect //Initiate Communication

 L 13 //Partner Unit Number

 T "UnitCom".U.Salve1.No

Simple transfer between two units Master side
//This code is usually done above the “Jump distributor”

L 5 //The unit number of the slave

T “UnitCom”.U.Slave1.No

//Then some phases would be implemented like that

Network

Title = Wait for Transfer

X10: set

//Send communication Signals

U “PA”

S “UnitCom”.U.Slave1.Connect //Establish the Communication channel

S “UnitCom”.U.Slave1.Start //Start up the Unit

S “UnitCom”.U.Slave1.TransReq //We want to Transfer

//Receive Signals

U “UnitCom”.Slave1.FillActive //if the Slave has started and entered filling

S “Phase End”

SPA COMM

Network

Title = Transfer

X11: set

//Send communication Signals

U “PA”

S “UnitCom”.U.Slave1.Connect //Establish the Communication channel

S “UnitCom”.U.Slave1.TransReq //We want to Transfer

S “UnitCom”.U.Slave1.TransActive //We are actively in transfer now

U “PH”

S “UnitCom”.U.Slave1.TransRel

//Actuators

U “UnitCom”.Slave1.FillActive

U “UnitCom”.Slave1.FillRel

U “PH”

S “ActD”.Act123.Aco

S “ActD”.Act124.Aco

S “ActD”.Act125.Aco

//Step End

U LSL //We got empty

S “Phase End”

SPA COMM

Network

Title = Rinsing

BatchXpert Engineering 201/283

X12: set

//Reset Water Counter

U “PFCycle”

S “CntD”.Cnt123.Reset

L “CntD”.Cnt123.PVal

T "Uxx".Para[11].Val

//Send communication Signals

U “PA”

S “UnitCom”.U.Slave1.Connect //Establish the Communication channel

S “UnitCom”.U.Slave1.TransReq //We want to Transfer

S “UnitCom”.U.Slave1.TransActive //We are actively in transfer now

U “PH”

S “UnitCom”.U.Slave1.TransRel

//Actuators

U “UnitCom”.Slave1.FillActive

U “UnitCom”.Slave1.FillRel

U “PH”

S “ActD”.Act126.Aco

S “ActD”.Act124.Aco

S “ActD”.Act125.Aco

//Receive Signals

U "Uxx".Para[11].D //Water amount

UN “PFCycle”

S “Phase End”

SPA COMM

… More unit Phases

Simple transfer between two units Slave side
Network

Title = Start Position

X1: set

//This function will request a new recipe if the Master requests

//the Salve to be started

 CALL "Bx StartBatchFromMaster"

 Release:="Bx UnitCom D".Master1.Start

 Master :="Bx UnitCom D".Master1

SPA COMM

Network

Title = Wait for Filling

X2: set

//Send communication Signals

U “PA”

S “UnitCom”.U.Master1.FillReq //We want to be filled

//Step End

U “UnitCom”.Master1.TransReq //The Master wants to transfer

S “Phase End”

SPA COMM

Network

Title = Filling

X3: set

BatchXpert Engineering 202/283

//Send communication Signals

U “PA”

S “UnitCom”.U.Master1.FillReq

S “UnitCom”.U.Master1.FillActive

U “PH”

S “UnitCom”.U.Master1.FillRel

//Actuators

U “UnitCom”. Master1.TransRel

U “UnitCom”. Master1.TransActive

U “PH”

S “ActD”.Act12.Aco

S “ActD”.Act13.Aco

//Step End

//We end when no transfer is active anymore

Un “UnitCom”. Master1.TransReq

Un “UnitCom”. Master1.TransActive

S “Phase End”

SPA COMM

… More unit Phases

BatchXpert Engineering 203/283

Some Common Help functions

Starting your unit with a Program

//All these functions should be called in the “Start Position” phase

 CALL "Bx StartBatchFromMaster"
 Release:="Bx UnitCom D".Master1.Start

 Master :="Bx UnitCom D".Master1

 CALL "Bx StartNewBatch"

 Start :=#SomeSignal

 ProgNo:=123 //The Program number to start

 CALL "Bx StartExistingBatch"

 Start :=#SomeSignal

 ProgNo:=123 //The Program number to start

 Prid :=#PridFromSomewhere //The Program number to start

Finding the next occurrence of a Phase in the recipe and getting a parameter from it
//First, we try to find the next occurrence of phase 8 in the current recipe

 L "Uxx".U.StepNo //We start searching at the current step

 T #TempInt

 CALL "Bx Find SetpNo from Rec"

 StartStepNo:=#TempInt

 PhaseNo :=8 //try to find Phase number 8

 Recipe :=DB101.Recipe

 StepNo :=#FoundStepNumber //if it fails it will be “-1”

//after we found one, we get “Parameter 4” from it

 CALL "Bx Get Param from Rec"

 StepNo := #FoundStepNumber

 ParamNo:=4 //We want Parameter 4

 Recipe :=DB101.Recipe

 SP := #Phase8_Param4_SP //if it fails, it will be “0.0”

 Status := #Phase8_Param4_Status //if it fails, it will be “0” which is invalid

Timer help functions
//If you need some arbitrary delay times you can use the Timer functions

//All of these need an DINT emory from any data block you have available

//There are funcions to create “One Shot” cycles

//Variable Pulse and pause timers, as well as “On Delays”

 CALL "Timer Impulse"

 ImpulseWidth:=T#1S500MS

 Release :=TRUE

 ImpulseEdge :=#Impulse

 TimeMemory :="Uxx".User.DINT1

 CALL "Timer Pulse/Pause"

 PulseWidth:=T#1S

 BreakWidth:=T#500MS

 Release :=TRUE

 PulseOut :=#PulseOut

 TimeMemory:="Uxx".User.DINT2

 CALL "Timer TOn"

 Start:=#SomeCondition

 SP :=T#10S

 Done :=#TimerDone

 ACC :="Uxx".User.DINT3

BatchXpert Engineering 204/283

Flow Integrators
//These funcions allow you to “Integrate” or “Totalize” a current flow to a volume. There

//are two versions of this. One generates an “Amount” as a Totalized number, and the other

//one generates impules that can be used to connect to Counter control modules

 CALL "Tec Flow2Impulse"

 FlowVal :=”Ain D”.Ain123.PVal //Flow in hl/h

 TimeRatio :=3600.0 //Seconds in Timebase of flow. It is . per hour, so 3600 sec

 ImpulseValue:=”Cnt D”.Cnt123.ImpVal //We use what the Counter already defined

 Impulse :=”Cnt D”.Cnt123.xSig

 ValCount :=”DB101”.User.Real1 //a Helper value for counting

 CALL "Tec Flow2Amount"

 FlowVal := ”Ain D”.Ain123.PVal //Flow in hl/h

 TimeRatio:= 3600.0 //Seconds in Timebase of flow. It is . per hour, so 3600 sec

 Start :=true

 Pause :=false

 Reset :=false

 ValCount := ”DB101”.User.Real2 //The totalized ammount

Value to Bit array (Value to Enumeration)
//This funcoin is helpful to easier handle Enumerations in sequences. It will take in an

//value n, and then set the n-th bit in a bit array.

VAR_TEMP

 EnumAiration : STRUCT

 No: BOOL;

 YES: BOOL;

 Impulse: BOOL;

 END_STRUCT ;

 TempInt: INT;

 TempBool: BOOL;

END_VAR

BEGIN

NETWORK

TITLE= Enumeation handling

 L “Uxx D”.Para[10].SP

 RND

 T #TempInt

 CALL "Conv Number2Enumeration"

 Structure:=#EnumAiration

 Value :=#TempInt

 Error :=#TempBool

//if the Value is

//0 it will set “#EnumAiration.No”

//1 it will set “#EnumAiration.Yes”

//2 it will set “#EnumAiration.Impulse”

BatchXpert Engineering 205/283

“Class” Programming

For applications where you must implement a lot of units that have identical

functionality, such as in an “Tank Farm”, you can use the BatchXpert “Class

Programming” paradigm. In the batch Configuration you can create multiple units

blow a single Class, which means that all units will share all phases, parameters, and

recipes of the class. This is done by simply assigning the same class to all the units

belonging to this class.

BatchXpert Engineering 206/283

PLC Fow diagram
In your plc Application this is implemented by the following logic:

BatchXpert Engineering 207/283

The Class Data block
You should create one item for each control module that your class is

going to use. You can either make one data block that contains all

control modules, or one data block for each module type. It is

recommended to use the following naming scheme.

The Unit Function block.
Since you want to write all the logic in the “Class function block”, you should not put any logic in the “Unit

Function block”. Apart from calling “FC100 Unit”, you must call no other functions.

FUNCTION_BLOCK "U001 UT32 config"
TITLE =Unit 001 Configuration

VAR_TEMP
 EmStop : BOOL ;
END_VAR
BEGIN
NETWORK
TITLE =Unit Phase Control

//Eventually the FC "Bx Unit" will call the Unit FC belonging to this unit (here FC 110) will be called.
//Refer to this Function for further information about class concept programming
 CALL "Bx Unit" (
 IN0 := 1);

END_FUNCTION_BLOCK

BatchXpert Engineering 208/283

The Unit Function
The main purpose of the Unit function in a class programming scheme is to copy all the control modules onto the

“Class Control Module” data block(s) and then call the “Class Unit Function Block”.
FUNCTION "U001 UT32 phases" : VOID

TITLE =Unit xxx Class UT phases

VERSION : 0.1

VAR_TEMP

 dummybool : BOOL ;

 RetValInt : INT ;

END_VAR

BEGIN

NETWORK

TITLE =Supply Class Control modules

//Acts

 CALL "BLKMOV" (

 SRCBLK := "Bx Act D".Act1,

 RET_VAL := #RetValInt,

 DSTBLK := "Class UT Act D".CoolingCono);

 CALL "BLKMOV" (

 SRCBLK := "Bx Act D".Act2,

 RET_VAL := #RetValInt,

 DSTBLK := "Class UT Act D".CoolingBottom);

 CALL "BLKMOV" (

 SRCBLK := "Bx Act D".Act3,

 RET_VAL := #RetValInt,

 DSTBLK := "Class UT Act D".CoolingTop);

//DIn

 CALL "BLKMOV" (

 SRCBLK := "Bx DIn D".DIn1,

 RET_VAL := #RetValInt,

 DSTBLK := "Class UT DIn D".LSL);

//AIn

 CALL "BLKMOV" (

 SRCBLK := "Bx AIn D".AIn1,

 RET_VAL := #RetValInt,

 DSTBLK := "Class UT AIn D".TempBottom);

 CALL "BLKMOV" (

 SRCBLK := "Bx AIn D".AIn2,

 RET_VAL := #RetValInt,

 DSTBLK := "Class UT AIn D".TempTop);

//Cnt

 CALL "BLKMOV" (

 SRCBLK := "Bx Cnt D".Cnt1,

 RET_VAL := #RetValInt,

 DSTBLK := "Class UT Cnt D".Content);

//PID

//no modules existing in this class

//Msg

//no modules existing in this class

//Switch

//no modules existing in this class

//ValX

//no modules existing in this class

//FU

//no modules existing in this class

BatchXpert Engineering 209/283

NETWORK

TITLE =Call Class Structure

 UC "Class UT Config";

NETWORK

TITLE =Desupply from Classes

//Acts

 CALL "BLKMOV" (

 SRCBLK := "Class UT Act D".CoolingCono,

 RET_VAL := #RetValInt,

 DSTBLK := "Bx Act D".Act1);

 CALL "BLKMOV" (

 SRCBLK := "Class UT Act D".CoolingBottom,

 RET_VAL := #RetValInt,

 DSTBLK := "Bx Act D".Act2);

 CALL "BLKMOV" (

 SRCBLK := "Class UT Act D".CoolingTop,

 RET_VAL := #RetValInt,

 DSTBLK := "Bx Act D".Act3);

//DIn

 CALL "BLKMOV" (

 SRCBLK := "Class UT DIn D".LSL,

 RET_VAL := #RetValInt,

 DSTBLK := "Bx DIn D".DIn1);

//AIn

 CALL "BLKMOV" (

 SRCBLK := "Class UT AIn D".TempBottom,

 RET_VAL := #RetValInt,

 DSTBLK := "Bx AIn D".AIn1);

 CALL "BLKMOV" (

 SRCBLK := "Class UT AIn D".TempTop,

 RET_VAL := #RetValInt,

 DSTBLK := "Bx AIn D".AIn2);

//Cnt

 CALL "BLKMOV" (

 SRCBLK := "Class UT Cnt D".Content,

 RET_VAL := #RetValInt,

 DSTBLK := "Bx Cnt D".Cnt1);

//PID

//no modules existing in this class

//Msg

//no modules existing in this class

//Switch

//no modules existing in this class

//ValX

//no modules existing in this class

//FU

//no modules existing in this class

END_FUNCTION

BatchXpert Engineering 210/283

The Class Function Block
This is where you would program all your logic that is normally done in the “Unit Function Block”, but instead of

referring to the Control modules directly, you refer to the “Class control module” that have just been updated

with data from the corresponding control modules by the “Unit function”.
FUNCTION_BLOCK "Class UT Config"

TITLE =Class Uni Tank Configuration

//Info: Starting from this point the Class is entered, and this the global

//Control module Data blocks ("Bx Act D", "Bx DIn D”...) are NOT available! they

//cannot be accessed from inside a class (this FB and all the Functions it

//calls)!

//

//Instead, the Class depending on control module data blocks ("Class Example 1 DIn

//D", "Class Example 1 Act D”...) must be used!

//

//for more information, please refer to the documentation.

VAR_TEMP

 EmStop : BOOL ;

 RelTempSensor : BOOL ;

 TempZone1 : BOOL ;

 TempInt : INT ;

 TempDint : DINT ;

 TempReal : REAL ;

 Temperature : REAL ;

 EnumTempSetpoint : STRUCT

 Auto : BOOL ;

 Top : BOOL ;

 Cone : BOOL ;

 END_STRUCT ;

END_VAR

BEGIN

NETWORK

TITLE =Init

 SET ;

 = #EmStop;

NETWORK

TITLE =Analog Input Alarm

//Activate Alarms according to level

 SET ;

 S "Class UT AIn D".TempBottom.ELLA; // level sensor Cone

 S "Class UT AIn D".TempBottom.iEHWA;

 S "Class UT AIn D".TempBottom.iELLW;

 S "Class UT AIn D".TempTop.ELLA;

 S "Class UT AIn D".TempTop.iEHWA;

 S "Class UT AIn D".TempTop.iELLW;

NETWORK

TITLE =Digital Input Alarm

NETWORK

TITLE =Counters

NETWORK

TITLE =Regulators

NETWORK

TITLE =Parameter Transfer

// tank level

 L "Class UT Cnt D".Content.PVal;

 T "Uxx".Para[13].Val;

//Extract

BatchXpert Engineering 211/283

 L "Class UT Valx D".CurrentExtract;

 T "Uxx".Para[10].Val;

//Temperatures

//Are done in the Class Phases function because they depend on selections from the

//Process details

NETWORK

TITLE =Unit Phase Control

 CALL "Class UT phases" ;

NETWORK

TITLE =Manual/Automatic Handling

 U "Run";

 S "Class UT Act D".CoolingCono.xAuto;

 S "Class UT Act D".CoolingBottom.xAuto;

 S "Class UT Act D".CoolingTop.xAuto;

 S "Class UT Act D".InOutlet.xAuto;

 R "Class UT PID D".Temp.MSpInt;

 R "Class UT PID D".Temp.MOutMan;

NETWORK

TITLE =Actuator Emergency Interlocks

 U #EmStop;

 = "Class UT Act D".CoolingCono.Rel;

 = "Class UT Act D".CoolingBottom.Rel;

 = "Class UT Act D".CoolingTop.Rel;

NETWORK

TITLE =Cooling Valves

//do not activate when empty or one of the zones is very cold

 U "Class UT AIn D".TempBottom.MLLA;

 U "Class UT AIn D".TempTop.MLLA;

 UN "Class UT DIn D".LSL.Sig;

 = "Class UT Act D".CoolingCono.Rel2;

 = "Class UT Act D".CoolingBottom.Rel2;

 = "Class UT Act D".CoolingTop.Rel2;

NETWORK

TITLE =In/outlet

 SET ;

 = "Class UT Act D".InOutlet.Rel2;

END_FUNCTION_BLOCK

BatchXpert Engineering 212/283

The Class Function
FUNCTION "Class UT phases" : VOID

TITLE =Class UT phases

VERSION : 0.1

NETWORK

TITLE =Init

//Current Tank Number

 L "UnitNo";

 T #TempDint;

 CALL "Class UT from UnitNo" (

 UnitNo := #TempDint,

 TankNo := #User.TankNo);

NETWORK

TITLE =phase number evaluation

 L "Phase";

 SPL X000;

 SPA X000;

//Production Phases---

 SPA X001; //Start position

 SPA X002; //Start Check

 SPA X003; //Set Status

 SPA X004; //Wait Filling Wort

 SPA X005; //Filling Wort

 … More Phases here

//Invalid Phase---

X000: SET ; //Invalid or not yet programmed phase number

 SPA END;

NETWORK

TITLE =phase 01: start position

X001: SET ;

//Start from wort cooler

 U "StatusSteril";

 O "StatusClean";

 S "Bx UnitCom D".U.Master1.FillReq;

 U "Bx UnitCom D".U.Master1.FillReq;

 U "Bx UnitCom D".Master1.Start;

 SPBN Rel;

 CALL "Bx StartNewBatch" (

 Start := "Bx UnitCom D".Master1.Start,

 ProgNo := "Bx UnitCom D".Master1.ProgNo);

 L "Bx UnitCom D".Master1.Charge;

 T "Uxx".U.Charge;

Rel: SET ;

NETWORK

TITLE =phase 02: start check

X002: SET ;

//Set Status Check

 U "PA";

 S "Class UT Act D".CoolingCono.SCS;

//Phase end

 UN "Class UT Act D".CoolingCono.SCE;

 UN "PFCycle";

 = "PhaseEnd";

BatchXpert Engineering 213/283

 SPA END;

NETWORK

TITLE =phase 3: set unit status

X003: SET ;

// check status is "selected"

 L "Uxx".Para[28].Sp;

 L 0.000000e+000;

 <=R ;

 S "OpReq";

// phase end condition

 L "Uxx".Para[28].Sp;

 RND ;

 L "StatusInfo";

 ==I ;

 UN "PFCycle";

 UN "OpReq";

 S "PhaseEnd";

 U "OpReq";

 SPB END;

// set unit status

 L "Uxx".Para[28].Sp;

 RND ;

 T "StatusInfo";

 SPA END;

NETWORK

TITLE =phase 4: Wait Filling wort

X004: SET ;

// signal to partner

 U "PA";

 S "Bx UnitCom D".U.Master1.FillReq;

// phase end condition

 U "Bx UnitCom D".Master1.TransReq;

 U "Bx UnitCom D".Master1.Run;

 UN "PFCycle";

 S "PhaseEnd";

 U "PhaseEnd";

 U "Run";

 S "Class UT Cnt D".Content.Reset;

 SPA END;

NETWORK

TITLE =phase 5: Filling wort

X005: SET ;

// amount brews

 UN "Bx UnitCom D".Master1.TransEnd;

 O #User.EndFilling_HF;

 SPB cntb;

 L "Uxx".Para[29].Val;

 L 1.000000e+000;

 +R ;

 T "Uxx".Para[29].Val;

 L "Uxx".Para[29].Sp;

 <R ;

 S "ProtWrite";

cntb: SET ;

BatchXpert Engineering 214/283

// alarms

 U "Bx UnitCom D".Master1.TransActive;

 U "PA";

 S "Class UT DIn D".LSL.EA1; //if the wort is not reaching the tank

 S "Class UT Cnt D".Content.EHHA;

// signals to partner

 U "PA";

 S "Bx UnitCom D".U.Master1.FillReq;

 S "Bx UnitCom D".U.Master1.FillActive;

 UN "Class UT Cnt D".Content.GAlS;

 U "PH";

 S "Bx UnitCom D".U.Master1.FillRel;

//Indicate last Brew to fill

 L 0;

 T "Bx UnitCom D".U.Master1.FunctionNo;

 L "Uxx".Para[29].Sp;

 L "Uxx".Para[29].Val;

 -R ;

 L 1.000000e+000;

 ==R ; //when only

 SPBN UltC;

 L 1;

 T "Bx UnitCom D".U.Master1.FunctionNo;

UltC: SET ;

// cooling

 U "PH";

 S #CoolingACO;

// phase end condition

 U "Uxx".Para[29].D;

 UN "Bx UnitCom D".Master1.TransReq;

 UN "Bx UnitCom D".Master1.TransActive;

 UN "PFCycle";

 S "PhaseEnd";

// tank volume

 U "Bx UnitCom D".Master1.OpenTank;

 U #FillingCountSignal;

 S "Class UT Cnt D".Content.xSig;

 L 1.000000e+000;

 T "Class UT Cnt D".Content.ImpVal;

 SPA END;

… More phase processing logic

END_FUNCTION

BatchXpert Engineering 215/283

The Unit No to Class Number converters
Many times, you will have to convert your Unit Number to the Class entity Number, for example Uni-Tank

Number, and back. This should be implemented by two Conversion functions. These conversion functions should

always exist and be used.

Class Entity Number to Unit Number
FUNCTION "Class UT to UnitNo" : VOID

TITLE =Convert Syrup Tank No to Unit No

//Company: MLogics

//Dependencies: None

//Class: Class "UT"

//Comment: This function converts an input UT Tank no to its Unit No for

// further processing. If the input Tank number cannot be resolved

// to a unit number (if it is a valid tank number), then this

// function returns dez -1.

NETWORK

TITLE =Evaluate input Syrup Tank No

 L #TankNo;

 SPL Err;

 SPA Err;

//UT270

 SPA T002; //UT 1

 SPA T002;

 SPA T002;

 SPA T002;

… Skipped for brevity

 SPA T001;

 SPA T001;

 SPA T004; //UT41

 SPA T001;

//Invalid tank number

Err: L L#-1;

 T #UnitNo;

 CLR ;

 SAVE ;

 BEA ;

NETWORK

TITLE =Calculate Tank number

T001: L #TankNo;

 L 31;

 -D ; //UT101 = Unit 11

 T #UnitNo;

 SET ;

 SAVE ;

 BEA ;

NETWORK

TITLE =UT270

T002: L #TankNo;

 L 60;

 +D ; //UT101 = Unit 11

 T #UnitNo;

 SET ;

 SAVE ;

 BEA ;

NETWORK

TITLE =UT41

T004: L 85; //UT101 = Unit 11

 T #UnitNo;

 SET ;

 SAVE ;

 BEA ;

NETWORK

TITLE =UT549

T005: L #TankNo;

 L 62;

 +D ;

 T #UnitNo;

 SET ;

 SAVE ;

 BEA ;

END_FUNCTION

BatchXpert Engineering 216/283

UnitNumber to Class Entity Number
FUNCTION "Class UT from UnitNo" : VOID

TITLE =

//Company: MLogics

//Dependencies: None

//Class: Class "UT"

//Comment: This function converts an input Unit No to its UT Tank

// number for further processing. If the input Unit number can not

// be resolved to a Tank number (if it is a valid Unit number),

// then this function returns dez -1.

AUTHOR : MLogics

FAMILY : UT900

NAME : UT_Unit

NETWORK

TITLE =Evaluate input Syrup Tank No

 L #UnitNo;

 SPL Err;

 SPA Err;

 SPA T001; //Unit 1

 SPA T001;

… Skipped for brevity

 SPA Err;

 SPA Err;

 SPA Err;

 SPA Err;

 SPA Err;

 SPA Err;

 SPA Err;

 SPA T002; //Unit 61

 SPA T002;

 SPA T002;

 SPA T002;

… Skipped for brevity

 SPA T005;

 SPA T005;

//Invalid tank number

Err: L L#-1;

 T #TankNo;

 CLR ;

 SAVE ;

 BEA ;

NETWORK

TITLE =UT900

T001: L #UnitNo;

 L L#31;

 +D ; //Unit 11 = UT32

 T #TankNo;

 SET ;

 SAVE ;

 BEA ;

NETWORK

TITLE =UT36

T003: L 36;

 T #TankNo;

 SET ;

 SAVE ;

 BEA ;

NETWORK

TITLE =UT41

T004: L 41;

 T #TankNo;

 SET ;

 SAVE ;

 BEA ;

NETWORK

TITLE =UT540

T005: L #UnitNo; //Unit86 = UT24

 L 62;

 -D ;

 T #TankNo;

 SET ;

 SAVE ;

 BEA ;

END_FUNCTION

BatchXpert Engineering 217/283

Production Planning System

It is a simple code integrated into the production system. Here you will find the production plan, number of

productions, program number (specification type), production rhythm and some Start options. How to use the

boot options is up to the programmer, the system in "Run" mode, batches are processed one after the other. The

start of the respective Unit takes place once it is free. With the start time (see Status) you can switch from Hold

state to Run mode automatically.

The planned time for the production rate is passed on to a deferred batch.

//this network must be inserted into OB1

Network

Title= Production Schedule

 CALL "Bx ProdSchedule2"

BatchXpert Engineering 218/283

PLC-to-PLC communications

BatchXpert does include optional Templates on how we recommend implementing communications between PLC

multiple PLCs. If the provided examples do not fit your specific needs, you can implement your own

communication mechanisms.

The Provided Example allows you to establish connections to all S7-Connection Compatible PLC’s, even if they do

not run with BatchXpert. You can, for example, establish communications with individual Machine control

systems, such as, pasteurizers, or other BatchXpert PLCs.

S7 Communications
S7-connections are a proprietary communication protocol from Siemens which is implemented by most Simatic

compatible PLC, for example from Siemens or Vipa. It is supported by all couldn't and past Simatic PLC series. The

communication protocol allows you to read and write arbitrary data from any S7- communication compatible

CPU.

S7 communications define on server and client model where clients will actively establish connections to server

and then request data from the server which in turn replies. This means that only clients will actively establish

connections to servers, but servers will never actively establish connections and only ever accept connection

requests from clients.

S7 connections only must be configured on the client side. The server usually does not know which or how many

clients are connected and requests data from it. This is an advantage since this usually means that you do not

have to configure the communication on both PLCS only on the PLC that will act as communication client,

Meaning the one actively establishing the connection to the server. However, this also means that servers will

have no control over which data will be read or written from and to the PLC by clients.

S7 Communications processors

most of the modern S7-1500 PLC series implement server and client functionality on the CPU. However not all

communication processors, especially on the previous 300 and 400 series, will implement client functionality. All

the Ethernet capable communication processors and CPUs will at least implement the S7-communication server

functionality, But not necessarily also the client functionality.

Most notably the CP 343-Lean communication processors do not implement S7-connection client functionality,

and only implement S7-connection server functionality, since their intended use is to be used to connect to

Ethernet based HMI systems.

NOTE! Please check the data sheet for your specific communication processor or CPU to support your required

communication features. If your communication processor or CPU does not support client functionality, it cannot

actively establish connections to any other PLC system, and only serve as communication partner if partner PLC

access active client and reads and writes data from and to the PLC.

BatchXpert Engineering 219/283

S7 Communications Settings
The S7-Connection require the Slot and Rack communication parameters, which should be defined according to

which PLC you are trying to communicate with

S7-300 series Rack = 2, Slot = 0

S7-400 Series Rack = 3 (usually), Slot = 4. But both parameters depend on your specific configuration

S7-1500 Series Rack = 0, Slot = 0

S7-1200 Series Rack = 0, Slot = 0

Get-Get Communication
To improve readability of PLC programs, you should always implement and get to get communication on all

involved PLCs. This means that each PLC will only ever read data from the other PLCS and never write data to any

other PLC.

This way data will only ever get read from any PLC in their communication system, and will never be written by

outside sources, such as communication channels.

However, it may be necessary for you to implement and get put communication in the case your partner PLC does

not support S7-Communication Client functionality. In this case your only option is to read and write data from

your partner PLC.

Note if both of your PLC's only support server functionality and do not support client functionality you cannot

establish communication between the two PLC's. At least one of the PLCs must support client communication.

Configure Communication Channels
The communication method is being configured in Simatic manager or in Tia-portal, and basically allows you to

define your communication partner, it's IP address and connection settings, and your local ID of your connection.

This local ID is important since this is your identifier that you must use in your application for the communication

data blocks so these data blocks can reference the connection that they should use.

BatchXpert Engineering 220/283

Implementing in the PLC
Function Block example with a single Segment
FUNCTION_BLOCK "Comm xxx"

BEGIN

NETWORK

TITLE =Trigger

//Here we trigger the communication every one second.

//then it will run through each of the configured Segments

 U #Enabled;

 U M 881.0;

 = #Trigger;

 L 0;

 T #Fill;

 L W#16#2;

 T #ConnID;

NETWORK

TITLE =Segment 1 Example to GET data from an PLC

//here we define which data we are loading from the Other PLC

 L #Segment;

 L 0;

 ==I ;

 SPBN Seg1;

 CALL #Job1 (

 REQ := #Trigger,

 ID := #ConnID,

 ADDR_1 := P#DB89.DBX 1200.0 BYTE 120,

 RD_1 := #ReceiveData.WCcomm);

//if the Job failed, we reset the received data to all Zeros, so we never get

//Frozen data

 U #Job1.ERROR;

 SPBN err1;

 L #Job1.STATUS;

 CALL "FILL" (

 BVAL := #Fill,

 RET_VAL := #Fill,

 BLK := #ReceiveData);

err1: SET ;

 U #Job1.ERROR;

 O #Job1.NDR;

 SPBN Seg1;

 L 0;

 T #Segment;

Seg1: SET ;

NETWORK

TITLE =Status Signals

//Here we evaluate an Error, and set the communication to OK or error

 U #Job1.ERROR;

 S #Error;

 R #ConnectionOK;

 U #Job1.NDR;

 R #Error;

 S #ConnectionOK;

 UN #Enabled;

 R #Error;

 R #ConnectionOK;

END_FUNCTION_BLOCK

BatchXpert Engineering 221/283

Function Block example with “Chunking” of data in two segments
FUNCTION_BLOCK "Comm xxx"

BEGIN

NETWORK

TITLE =Trigger

//Here we trigger the communication every one second.

//then it will run through each of the configured Segments

 U #Enabled;

 U M 881.0;

 = #Trigger;

 L 0;

 T #Fill;

 L W#16#2;

 T #ConnID;

NETWORK

TITLE =Segment 1 Example to GET data from an PLC

//here we define which data we are loading from the Other PLC

//this is the first data segment we load

 L #Segment;

 L 0;

 ==I ;

 SPBN Seg1;

 CALL #Job1 (

 REQ := #Trigger,

 ID := #ConnID,

 ADDR_1 := P#DB89.DBX 1200.0 BYTE 120,

 RD_1 := #ReceiveData.WCcomm);

//if the Job failed, we reset the received data to all Zeros, so we never get

//Frozen data

 U #Job1.ERROR;

 SPBN err1;

 L #Job1.STATUS;

 CALL "FILL" (

 BVAL := #Fill,

 RET_VAL := #Fill,

 BLK := #ReceiveData);

err1: SET ;

 U #Job1.ERROR;

 O #Job1.NDR;

 SPBN Seg1;

 L 1;

 T #Segment;

Seg1: SET ;

NETWORK

TITLE =Segment 2 Example to GET data from an PLC

//here we define which data we are loading from the Other PLC

//this is the second data segment we load

//Note: We still use the same “Job1” and the same connection ID,

//as for the first segment

 L #Segment;

 L 1;

 ==I ;

 SPBN Seg2;

 CALL #Job1 (

 REQ := #Trigger,

 ID := #ConnID,

 ADDR_1 := P#DB99.DBX 1200.0 BYTE 120,

 RD_1 := #ReceiveData.WCcomm2);

//if the Job failed, we reset the received data to all Zeros, so we never get

//Frozen data

 U #Job1.ERROR;

BatchXpert Engineering 222/283

 SPBN err2;

 L #Job1.STATUS;

 CALL "FILL" (

 BVAL := #Fill,

 RET_VAL := #Fill,

 BLK := #ReceiveData);

err2: SET ;

 U #Job1.ERROR;

 O #Job1.NDR;

 SPBN Seg2;

 L 0;

 T #Segment;

Seg2: SET ;

NETWORK

TITLE =Status Signals

//Here we evaluate an Error, and set the communication to OK or error

 U #Job1.ERROR;

 S #Error;

 R #ConnectionOK;

 U #Job1.NDR;

 R #Error;

 S #ConnectionOK;

 UN #Enabled;

 R #Error;

 R #ConnectionOK;

END_FUNCTION_BLOCK

Callsite in the OB1 Organization Block
ORGANIZATION_BLOCK "CYCL_EXC"

BEGIN

NETWORK

TITLE =Communications

 CALL "Comm xxx" , "Comm KS1 Data" (

 Enabled := TRUE);

END_ORGANIZATION_BLOCK

Unit Communication Channels
The mentioned above, this communication method allows you to read arbitrary data from your partner PLC,

however if you are communicating with the patch expert system you can read units communication interface and

then use it in your PLC as if it would be any other communication interface on the local PLC.

This allows you to use the same communication interface that inter unit communications use also between

different PLC. For more information on how to use inter unit communications please refer to Unit-to-Unit

Communication.

Data length for Get and Put connections
The amount of data that you can request with each GET call is limited by several factors, and may vary depending

on the Local PLC type, the remote PLC type and the Communication processors involved. The amount of data may

be between 100 bytes up to 400 bytes of total data, depending on these factors. Especially for S7-1200 PLC’s the

amount of data is very limited.

In your experience, the data length limits are approximately according to the following table for each “GET”

request. These are just values based on our experience, and should only be used as guidance, rather than

documented limits:

BatchXpert Engineering 223/283

If either the Local or Remote PLC is an S7-1200 120 bytes

If either the local or remote PLC is an S7-300 200 bytes

If the local AND remote PLCs are S7-400 350 to 400 bytes

If an “Lean” CP is used 200 bytes

In conclusion, usually the limit is around 200 bytes per “Get” request.

To find the maximum amount of data, we recommend doing empirical tests, to find this limit. Calculating it

reliably, is nearly impossible, due to the lack of documentation from the Hardware vendors.

If more data needs to be exchanged between PLCs, than a single “GET” call can support, we recommend you use

an “Chunking” or “Segmentation” Mechanism by extending the corresponding network in the communication

function accordingly. See above for an example. You can extend the function to as many segments as you need.

You must keep in mind however, that each segment requires time to execute, meaning, the more segments you

have, the slower your communication will get.

Since “Chunking” or “Segmentation” of your communication data may result in inconsistent data, you may have

to employ Double-Buffering or other mechanisms to obtain the required Data consistency level.

Special Considerations for S7-1500 Series
By default, S7- 1500 series PLCs will block get and put requests from PLCs. To enable this functionality, you must

activate the setting in your hardware configuration of the PLC (Allow “Get/Put”).

Special Considerations for Vipa CPU’s
Due to limitations of the S7.protocol implementation on Vipa

communication processors, the “Local ID” cannot be freely chosen on

Vipa PLCs. The communication ID for each connection that is

adjusted on the communication dialogue must always be below the

maximum number of supported S7-Connections (usually 16). If you

are just connection identifiers for example of 101 to implement some

naming scheme for connection ID's, these connections will never be

able to establish connection to any other PLC you have to use communication IDs between one and the maximum

number of supported S7 connections by the PLC.

Usually this means that you can only use the connection IDs between 1 and 16.

file:///M:/Projekte/BatchXpert/BatchXpert/Doku/Manuals/SDK/Get/Put%23_Allow_

BatchXpert Engineering 224/283

Extending of Control Module Data blocks

When adding new control modules to the PLC, special care must be taken since the new control module starter

has to be transferred to the appropriate data blocks in your controller. Adding new control modules can be

differentiated between two basic cases.

Using a spare control module
At the beginning of a project, you create all your control modules data blocks. These data blocks by default

include spare control modules that already exist in the controller but are not actually used by your application. If

the control module starter is already present in the data in the data block in the PLC, you can simply open the

data block in Simatic manager or tier portal and change its comment to reflect your new control module. A

download of deep control module data block is not required in this case.

If enough spares are present in the data block, you can simply rename these pairs and use them straight away.

Extending the data block: Considerations
Sometimes it is necessary to extend the length of the existing control module startup block, to make space for the

new control modules. This usually happens if larger portions of existing applications are extended and many new

control modules must be added to the existing ones.

In that case an extension of the existing control module data blocks is necessary, which also means that a

download of this new data block into the controller is also required. You must keep in mind that a data block

download of Simatic controllers implies that all the data block will be overwritten by the ones stored in your

project. This means that all control module settings, such as simulation status, alarm delays, alarm levels, will be

overwritten by the settings in your project that you are going to download.

Extending the data block: S7-Backup
MLogics provides tools to mitigate this problem. The S7-backup tool allows you to upload the current data of a

data block, download your new extended data block, and then subsequently downloading the original current

data of the control modules that existed before downloading your new data block. This allows you to save the

current data before downloading the new data block and restore the current data of all control modules after

downloading your new extended data block.

S7-backup is available as a separate installer, which can be downloaded by the BatchXpert installation center, or

directly from our documentation homepage.

Extending the data block: How to upload and download

Input Connection parameters of your PLC

BatchXpert Engineering 225/283

Discover all blocks and upload at least the data blocks

You can of course also upload all the blocks containing the controller, so you can already obtain an online backup

of your current PLC. This upload can then be saved to and backup file, which can be reviewed or even restored if

necessary.

By clicking the upload button, the upload dialog appears, and the download of the selected blocks is executed

BatchXpert Engineering 226/283

Now you have saved the current data of the selected data blocks to your offline file, which means that you can

now download your new extended data blocks and temporarily overrides the current data of the control

modules.

After your download has finished you can select the relevant data blocks from your saved file and click the

download button.

After confirming the downloads, you will be asked if you want to download the full data block, or only the current

data that you saved previously. It is very important to select the "download current data only” option. This will

only download the current data of all control modules that existed before you downloaded your new extended

control modules doctor block. The “Download all block data” Would restore your controller startup block to the

same as it was when you took your backup, which means that your newly extended data block would be reset to

its old size.

BatchXpert Engineering 227/283

Overview of HMIs

The BatchXpert system primarily uses the VisXpert SCADA system for its HMI screens, which is integrated with

BatchXpert. BatchXpert cannot function without at least one full VisXpert station available. All HMI field panels

should be seen as an “auxiliary operating station,” more than a fully-fledged station. Only BatchXpert operating

stations using the VisXpert system support the full functionality of BatchXpert, such as Recipe editing, Reports and

others.

For this reason, the use of dedicated “traditional” Hmi touch devices such as Simatic Panels, are discouraged in

favor of “Touch Panel PC’s”. These Panel PCs are running the same “VisXpert” SCADA system as all other

Operating stations, and thus use the same project without modification, thus eliminating the need to maintain

multiple HMI and SCADA systems synchronized.

Screen Resolutions
BatchXpert includes libraries for the following SCADA and HMI systems and

resolutions. New Resolutions can be added, but the Templates must be adjusted

manually to fit the screen size. VisXpert supports full screen scaling, enabling the

user of different Screen resolution.

• VisXpert Visualization
o 1920 x 1080 (Full HD)
o 1600 X 900 (HD)
o 1366 x 768 (Notebook)

As stated above, the use of traditional touch panels is discouraged in favor of Panel PCs. Thus, the following list of
HMI devices is supported, but should not be used for new projects.

• Movicon Display for Touch Screens
o 1024 x 768" (10")
o 800 x 480 (7")

• WinCC Flexible for Simatic Touch Screens (without TIA Portal)
o 800 x 480

• WinCC Basic and WinCC Comfort for Simatic Touch Screens (with TIA Portal)
o 800 x 480
o 1280 x 800

Adjust Screen Resolution
In VisXpert, the screen resolution is chosen based on the “BaseProcessWindow,” which comes with versions for

different screen resolutions. These different windows have adjusted layout. To choose an “BaseWindow” and a

corresponding Screen resolution, you must adjust the default base window in the “Settings” variables in the

“VisXpert” variable editor. By default, the screen resolution is set to “Full HD” (1920 x 1080).

Since VisXpert Version 10, the HMI system supports scaling the Hmi screens to fit the current screen resolution.

To take advantage of this, you must enable the corresponding setting in the Graphics editor of VisXpert.

This way the recommended solution is to create all process screens for a native “Full HD” resolution and then

scale them down for stations that have lower resolutions. However, this scaling can result in suboptimal graphics,

which can only be avoided by designing the Graphics display to the desired resolution.

BatchXpert Engineering 228/283

For the other HMI Project templates, there are projects with different resolution prepared in the specific folders.

Multiple Monitors
Multiple monitors are supported by the VisXpert system by using the “MultiMon” VisXpert module. For details,

please refer to the “Manual BatchXpert Multi Monitor Support” manual.

BatchXpert Engineering 229/283

"Visu Extern" System (Touch Screens)

The BatchXpert system implements and sophisticated HMI customization mechanism that allows you to

implement custom HDMI systems with custom status words and even customized data exchange. This

communication channel is referred to as “Visu Extern” and allows you to fully customize your communication

mechanism with your customized HMI solution. You can implement multiple different “Visu Extern”

communication channels on the same PLC, thus supporting multiple HMI mechanisms at the same time.

This mechanism is generally used for simpler touch panels that do not run the full VisXpert SCADA system, for

example WinCC Comfort or MoViCon Touch panels.

Since this communication mechanism builds upon the internal HDMI mechanism of batch expert, all historic data

recording for manual interventions is still fully supported, even for external HMI systems.

Nowadays the use of “Visu Extern” for “Touch HMI Systems” is generally discouraged in favor of touch panel PC's

running on the VisXpert SCADA System.

External HMI
This communication channel is commonly used for WinCC and MoViCon based touch panels come on but also text

panels or even legacy “Mosaik” systems. The BatchXpert system separates between two types of Visualization

(HMI)

• Internal View: The main system, integrated into the BatchXpert System. Only the "VisXpert" SCADA

system is available.

• External View: All other HMIs. For example, Siemens WinCC Flexible, Progea Movicon, or other types of

touch screens.

Regardless of the type of Visualization (Internal or External), the system manages and records all the actions

performed to some control module, in such a way that there are records in the system's databases. This means

that there are also Records on Manual Operations not only of the Internal View, but also of all the External Views

added to the system.

Fundamentally, these “External HMI” blocks depend on your symbol library for the Hmi systems that you use.

BatchXpert by default comes with libraries for “WinCC Flexible,” “WinCC Comfort” and Movicon. Since WinCC and

Movicon have different requirements for the data exchange, they both come with their own “External Visu”

block, that can be used.

Disadvantages of using HMI Panels
If you are using external HDMI systems, you must manage each HMI system separately, which generally means

that you must implement your HMI screens in all your HMI systems. This is the reason why this concept is

generally discouraged in favor of VisXpert SCADA, since this allows you to manage one single SCADA project for all

your touch panel applications and even operating stations.

BatchXpert Engineering 230/283

Functional Diagram

Inside the Controller (PLC) Out of Controller (PC, Touch Screen, SQL)

Process Program (PLC) HMI (Internal Visu) Management System

This system handles and pre-processes the statuses

and commands received from HMI systems

Historical data System

This system sends

commands from the HMI

system to the BatchXpert

Database. It also works as a

buffer to store the data until

it can be registered in the

Database.

SQL Database

Permanent storage of

log data

Visu Intern

GraphPic

External Visu

Movicon Send logs to

SQL

External

Visu

WinCC

External

Visu

Movicon

Record

Manual

Trades

Control Modules

Actuators, Digital Inputs, Analog Inputs, Regulators....

It manages the entire system of modules. It processes the Commands and

calculates the statuses according to the periphery and commands from the

HMI systems. It also updates the data of the HMI Management system.

External Visu

WinCC

Status &

Commands

Locking,

Automatic

Control,

Status &

Command

Status &

Command

Status &

Command

Status &

Commands

Status &

Commands

BatchXpert Engineering 231/283

Process Graphics with VisXpert

VisXpert is the basis for all the HMI graphics of BatchXpert. You can find manuals in the MLogics Knowledgebase

with more details. In this manual we only want to touch the BatchXpert specific parts of creating a process screen

for your application and tries to give you an overview of the general functionality and how you can achieve

common use cases with this expert graphics editor.

Here are some resources you should read first, or be already familiar with:

• Mlogics Knowledge base: https://docu.mlogics-automation.com/

• VisXpert Graphics Editor: https://docu.mlogics-automation.com/overview-1/visualization/visualization-

editor/create-a-process-image/

Communication Module
This expert is a modular SCADA system that implements all

its functionality through the implementation of different

modules. Each module serves a different purpose, but all

modules are managed by previous expert communication

module.

The communication module is also responsible for managing

all the different variables, also called Tags, of your

BatchXpert application. This means that the communication

module is the application that manages all the data of

internal variables, and the data from external OPC-servers or

PLCs.

Each of the modules has a runtime and a design time editor, which allows you to adjust your configuration of your

module and then execute your configuration during runtime. An example of such a module is the HMI module or

the trend recording module.

VisXpert Also includes a rich programming interface, in which you can implement custom modules in C#, C++ or

Delphi. You can find more information in our knowledge base, or in the installation directory of this expert, where

you can find programming examples for the “.net” platform.

HMI Graphics Editor
The Graphics editor is available in the VisXpert Communication module in the

“Configuration section”. It can only be activated if you have sufficient user access rights.

To open the configuration section of VisXpert, you may have to bring the

“communication module” window into the foreground. Usually, this window will be

minimized when starting the HDMI application and is not visible

to the user. When the communication module is minimized, it

shows an icon in the windows “SysTray”, which is the icon area

left to where the windows clock is located. If you open this “SysTray ”, you can bring the

communication model to the foreground by clicking on the VisXpert icon.

https://docu.mlogics-automation.com/
https://docu.mlogics-automation.com/overview-1/visualization/visualization-editor/create-a-process-image/
https://docu.mlogics-automation.com/overview-1/visualization/visualization-editor/create-a-process-image/

BatchXpert Engineering 232/283

When opening the configuration three in this expert communication module, you might encounter multiple HMI

applications. The reason for this is that BatchXpert supports multiple monitors, where each monitor corresponds

to one HMI application. Usually you want to use the “multimon” this expert module to manage HMI applications.

This module will synchronize the different HDMI application between each of the modules come up which means

you should only ever edit and modify an HMI application called “HMI 1”. All other HDMI applications will be

synchronized with this HMI application.

If you have sufficient user rights, you can double click on the HMI application to start the graphics editor.

The Graphics editor
The Graphics editor features a drop-down selection where you select the window that you are currently editing.

You select the window that you want to edit from the window selection dropdown menu and can then select, edit

or add new drawing objects or symbols to the process screens.

All graphical screens and face plates are implemented in this graphics editor, which also means that they can be

edited to fit your needs. However, some advanced dialogues, that heavily depend on data from BatchXpert

database, are implemented outside of the graphics editor as in separate application to provide a better user

experience.

Images and Bitmaps
Images and bitmaps are an essential part of all Process images, and the reason the HMI can create modern

looking process screens. BatchXpert includes a library for process screens as part of the “BatchXpert SDK” in the

directory: “C:\Program Files (x86)\BatchXpert SDK\Visu\Images”

VisXpert supports a variety of image types, which includes “PNG” including transparency. Since PNG files are the

only image type that supports true transparency, we recommend that you use these image files format. 32-bit

BMP files are also supported (8 bit per color channel and 8 bits for Alpha), which also support transparency, but

not all image processing applications support these image formats, which makes it harder to edit.

The image library still includes a lot of images as bmp files with static-colored backgrounds, for which we

recommend converting them to PNG files with true transparency before using them.

BatchXpert Engineering 233/283

Graphics and Dynamics properties
The graphics editor allows you to modify basic object parameters by right

clicking on the respective item. The context menu gives you access to the most

basic appearance properties such as line type, line color or fill colors.

This graphic properties are static properties and only define the basic

appearance of all the drawing objects. To animate these properties, you must

use “Dynamics”.

The ”graphic” menu option on the context menu gives you access to element

specific graphical options such as text alignment tool tips value formats and such. Most notably you can adjust

many text properties like text layout text rotation and such for text objects and change the graphics file used for

image object.

Dynamics
Dynamics is the term used in this expert for the concept of linking variables to graphic objects to animate them,

change colors, change text or changed their appearance.

The “dynamics” Menu option on the context menu allows you to adjust dynamic animations for a different

graphical property of these drawing objects. This allows you for example to change the background color

depending on the value of a variable, animate the text property of a graphics object to reflect the current value of

and variable, or even execute scripts and other actions when being clicked.

You can only change graphical properties for simple objects, not for symbols from the library. The graphical

properties of symbols, called “Objects”, must be changed in the “Object” editor that is also available inside the

graphics editor.

Scripts
VisXpert supports a powerful scripting language. This scripting language is

extensively used in the HMI symbol library of BatchXpert.

You can find mor information here: https://docu.mlogics-

automation.com/overview-1/visualization/visualization-script/

The Scripting language uses an “pascal” like syntax an includes the following features:

• High level, imperative language

• Database access using queries for reading and modifying data

• Manipulate Graphics properties of Drawing objects

• Access to variables of the PLC

• File access

• String manipulation, trigonometry, and other functionality

https://docu.mlogics-automation.com/overview-1/visualization/visualization-script/
https://docu.mlogics-automation.com/overview-1/visualization/visualization-script/

BatchXpert Engineering 234/283

Element Scripts
The graphics editor allows you to create powerful customized

animations based on the scripting language. With this scripting

language you can implement most of your animation

requirements that cannot be met by the normal dynamics

functionality.

To use element scripts, you must open the dynamics dialog select

the property that you want to animate (in the example provided it

is the text color), and then select “@ElementScripts” from the

groups drop down menu.

This allows you to write a customized script which calculates the

value for the property that you want to animate come up based

on the result of your script. This script can access any variables,

functions, databases, or any file you need.

If you click on the “Switch to Script dialog” button, the full scripting interface will

open, and you can write your script in the usual scripting dialog.

Usually, you use this functionality to animate drawing object properties based on

sometimes complex calculations, for example: showing different colors

depending on complex ranges of values of multiple analog inputs. Or showing

customized texts for different values or value ranges.

Example you can see that do you result is being calculated by taking two multiple analog input values which are

both different variables, doing a calculation on them and returning the result to be shown on the HMI.

BatchXpert Engineering 235/283

Script Functions
the graphics editor allows you to implement commonly used scripts into script functions.

These Script functions can then be used in all other scripts, such as element scripts,

object scripts and even in other script functions. By default, the BatchXpert application

comes with a vast library of script functions that cover multiple use cases and extend the

functionality of the scripting language itself.

It implements an advanced string processing library that enhances the string processing

capabilities of your HMI applications period. You can also implement your own functions

to realize project specific functionality and centralized commonly used code in one single

script instead of copying and pasting scripting code into multiple objects. All provided

script functions include and header with a detailed description about what descript

function does and how to use it.

We strongly recommend you implement common scripts into script functions, so that you can manage them in

one single place but still have them available in all other scripts. We also recommend you include a script header

with a detailed description about your script function for documentation.

BatchXpert Engineering 236/283

BatchXpert Process Screens

When the BatchXpert HMI is started, first it will open the Window

“StartPage”, which is the loading screen of BatchXpert. After

loading finished, it will open the “BaseProcessWindow V2

1920x1080” window.

This window forms the basis on top of which all the process

windows will be opened. This “BaseProcessWindow V2 1920x1080”

always stays open in the background, so the menu bar and all

system components will always be visible.

The Base Process Window will hold all controls and drawing objects

that are always visible, such as the alarm bar, the Main menu bar,

and other controls to control “Expert Mode”, “tooltips” and the

current Time. This base window should never be closed during the runtime of your HMI application, as it also runs

some scripts in the background that provide additional functionality for the whole application

The Menu bar is also an essential part of this base window which is implemented by an “VisXpert object” that

must be configured from scripts. More details later. The Main menu provides access to all your process areas by

dispatching to the corresponding “overview screens” and allowing direct access to all individual windows through

the drop-down menu for each area. More information can be found in the “The HMI Main Menu” chapter.

BatchXpert Engineering 237/283

Process Screen Hierarchy
The Main Menu visible on the “BaseProcessWindow V2 1920x1080” Window, is the essential menu that allows

the user to dispatch to all process screens. The “Main Button” dispatches to the Process overview, and the drop-

down menu gives access to all individual process images of each area.

Each menu area is reserved for a single “Processing Area” such as “Utilities”, “Brewhouse”, “Fermenting”,

“Maturation”, etc. The first menu item is reserved for the “Start” menu, which provides access to all BatchXpert

applications and serves as main menu for BatchXpert itself.

All process areas are organized multi-level process image hierarchy. On the top level there is his start page which

shows information about the connection status and alarm status of all process areas, below that you can access

an overview picture for each of the process areas that are available from the main menu, and below that are

process images with details for each processing unit. The main menu allows you to access these different process

window hierarchies by using drop down menus that allow you to open do you required unit detail process

windows directly from the main menu.

BatchXpert Engineering 238/283

Drawing Process Screens
Since the process screens are opened “on top”

of the “Base Process Screen” they must have a

smaller size and position offset to the “base

process window”. By default, the size and

position of process windows should be as shown in the image.

The Process Screens can be created by applying Screen layouts, coloring etc. as the

client wishes. BatchXpert provides an “Standard” for coloring of process lines, and an

image library for implementation in the process screens, which are available in the

“Library” process Screen in the HMI template.

All Control modules are represented by “Objects” which encapsulate all functionality of

a module and can be easily configured by assigning variables to them, more on their configuration below.

The Symbol Library
BatchXpert implements its symbol library by using “VisXpert

Objects”. These objects are self-contained drawing objects

that contain dynamics, scripts, and all graphics components

of a control module.

They are also fully integrated into the BatchXpert HMI system

and incorporate features like Opening Faceplates, Sending

commands to the PLC, etc.

When you add a Symbol to the Process graphics, you must

specify its data connection. For example, for actuators, you

would have to specify on which Actuator Variable will

operate.

Configuring BatchXpert Symbols
In the project images the objects have a PLC variable assignment,

right-clicking on the object will open a menu where we will select

"Dynamics" where you must select the group and the variable,

example, group: PLC01, Variable: DIn0004.

To edit the existing variable, click on the variable and click on

"change variable base name".

Once all the image configurations are finished, save, and start the simulation to verify that everything is correct.

BatchXpert Engineering 239/283

Change Process Windows
To create buttons that switch the visible process window, you should create a script action on a button or image

and call the “WMChangeProcessWindow(string windowName)” function from the provided scripting library.

You should avoid using the open and close window functionality of buttons or other objects, because the window

manager script functions provide additional functionality for the HMI system, such as a previous image buffer,

and special handling for face plates and modal dialogues. BatchXpert provides multiple window manager script

functions that you can use for different purposes throughout your project.

The buttons on your process screens that allow the user to change process screens are usually composed of and a

bitmap of one of the prepared button colors with the appropriate text overlaid on top of this bitmap. The change

process windows script is then programmed in the button left mouse click event of the bitmap, as seen in the

image below.

Remove unused “Windows”
If you copy a project from a different project, you should remove all screens that are

not actively in use. This ensures that you do not have references to variables that you

are not using anymore and reduce the size of the HMI Project file.

Especially you should remove all “PLC0x” windows, where x corresponds to an PLC

number that you are not using. All these windows can easily be imported again from

the HMI library as described in chapter Importing the PLC dependent Windows from

your library

BatchXpert Engineering 240/283

Process Graphics Style Guide

The following chapter we are going to present our recommendations for styling process graphics in the

BatchXpert System. Of course, you can adapt this guides to fit your company and client preferences, the following

are only guides after all.

High Performance HMI Handbook
We recommend that you read the “High Performance HMI Handbook” by “Bill Hollifield”, which contains a lot of

great advice and guidance for creating HMI interfaces for all sort of Processes, vehicles and Machines. BatchXpert

adopts some aspects of these guidelines but does interpret others more loosely. The Color scheme used by

BatchXpert uses many more colors than is recommended. However, you should adhere to the following general

rules:

• Do not use “Flashing” or “Blinking” animations, except for exceptionally critical indications such as things

that may damage personal or equipment. Normal Process alarms do not fall into this category and should

not be made “Blinking”. In practice, BatchXpert never uses blinking animations in any of its defaults

Objects and screens.

• Red is reserved for “Alarms”, and should never be used in any process screen, except for Alarms

• Flow diagrams should reflect the logical flow, and not be an exact representation of the P&ID. You should

omit non necessary symbols such as, manual valves, check valves, filters etc., wherever not relevant.

• Avoid Moving Animations. You should not use animations that “move” objects, such as “Rotating

Agitators” or such.

Preferred Editor Settings
All BatchXpert Objects are designed to be 36x36 pixels in height and width,

which makes the “Centerlines” align exactly to grid points of 4 x 4. This way

you can position all your objects precisely in the middle of lines.

In the Graphics editor you can open “Options-> Editor” you can set these grid

size and activate “Align at Grid”, so that objects automatically align to the

nearest multiple of your Grid settings. We recommend the settings on the left.

Pipes
The following process colors are recommendations, but not mandatory to be used

for your process graphics. Of course, this is only a guideline and you can adapt any

coloring scheme you wish for in your projects.

You should differentiate between Primary product flow and secondary flow by using

different line thicknesses. Usually, the primary product flow has a line thickness of 3,

and all secondary product flow have a line thickness of 1 pixel. Secondary product

lines should never interrupt primary product lines, neither horizontally nor vertically.

Primary Product lines should clearly denote the main product flow.

You should connect pipes in 90° angles with each other where possible and avoid

using arcs or bends to “simulate Pipe bends”. Use simple 90° angels to create easy to follow diagrams, that are

similar but simpler than P&ID drawings.

BatchXpert Engineering 241/283

Process interconnections (Window Jumps)
Connections to different process screens, meaning pipes that come and go from/to different

parts of the process that are represented on other Process screens, are represented by an

“Page Jump”, that is represented by an “Color graded Rectangle” in the same color as the

pipe. Usually, these page jump indicators should have an accompanying “Arrowhead” to

indicate flow direction.

These page jump indicators are implemented as

Bitmaps, which are available in multiple colors to fit

the piping that is indicated. The size of these page jumps should be 180 x

36 pixels. The bitmap itself should then hold the Script logic to “Change Process Windows”.

Equipment representations
To represent different equipment types such as Lauter tun, Mash tun or Heat exchangers, you should use

representative bitmaps or PNG images. These images Should ideally be in muted pastel colors or ideally in

grayscale colors, as to not distract the user’s attention away from important information.

Overview Screens
Each processing area should have one overview image, which represents the overall process layout of this area,

with as little details as possible, while maintaining the most important control modules. This is usually done by

representing a small pictogram off the production vessel, and only showing vague schematics for production lines

and only representing the most important control modules, such as the main product pump or main product

valves, and omitting all CIP, water and other supply lines.

The idea of such an overview image is to give an quick overview and easy to read information to the user. This

way the user can easily and rapidly understand the overall status of the whole processing area. All relevant

processing steps should also visualize the current operating procedure and recipe, as the rapidly allow user to

determine what each equipment is doing in the process.

The following image is an example of an overview of a brewhouse:

BatchXpert Engineering 242/283

Example screens
The following screens are example screens that represent typical processing graphics of BatchXpert. Of course,

you can deviate from this style guide to fit your company's and the clients requirements.

BatchXpert Engineering 243/283

Application Start Script

The HMI Application of your Project includes an “Application. Start” script, that runs as soon as the HMI runtime is

started up. This script is used to configure and set up multiple global variables such as the Main menu and

optionally synchronize the Operating stations time with the PLC time.

The Application Start script will perform the following actions:

• Configure the Main Menu

• Optionally set the PLC time

• Set the Application Startup language for the HMI according to the project settings

• Optionally block access to the operating system

• Reset PLC system alarms, that may have been “stuck”

You can easily add your custom startup logic here. You can find a lot of comments in the Application start.

BatchXpert Engineering 244/283

The HMI Main Menu

The HMI Main Menu is located on the “BaseProcessWindow V2 1920x1080” or “BaseProcessWindow V3

1920x1080”. This menu allows the user to quickly and efficiently move to different HMI screens of the plant. The

main menu is implemented as a library object, and it's located on the base window of all process screens. The

main menu has an area where you put an alarm group, a main button and an optional dropdown button.

Usually there is only one single menu per plant, which means that the menu stays the same for all process

screens.

Configuration of these Buttons
The menu is a library object, and all its buttons’ functionalities are configured through the variables assigned to

the library object. The Variables are usually contained in Group “MainMenu”. You can define an “Main Window”

and an “Drop Down” window, which opens when clicking on the small “arrow” on the right side.

The configurations of the windows that should be linked to the main menu is usually done in the

“Application.Start” script.

BatchXpert Engineering 245/283

Main button Text and Translations
The text of each main button is configured directly in the HMI editor on the “BaseProcessWindow. The Main

button Text is a simple text on top of the “Main Menu” library object. This means that the normal Translation

mechanism of VisXpert applies to these texts as well.

Alarm Group
Each button usually also includes an Alarm Group, that shows the process of the underlying Area with colors and

pictograms .These Alarm groups are also normal library objects and can be configured the same way as ordinary

objects, by assigning a Variable name and Group to them.

Drop Down Windows
Drop down windows are small windows that pop up and show all underlying process pictures that can be

navigated to. The drop-down window in and of itself is an ordinary window and can be configured like any other

window and assigned to the main menu from the application scripts. The Drop-down button includes a special

functionality to always move the Drop-down window to where the Drop-down button was clicked, to appear as a

drop-down window. This also means that the configured location of the drop-down windows is not required and

will always be overridden when a drop-down button is clicked. This also means that one drop down window can

be used in multiple drop-down buttons.

BatchXpert Engineering 246/283

Configure communication with the PLC

All variables that are being exchanged with a connected BatchXpert PLC, are managed by the “PLC Data” module,

which is accessible from the “VisXpert communication module”. Double clicking on this module, you will give

access to the “VisXpert variable editor”, which allows you to change the configuration of all configured variables

in your project. It allows you to add new variables, or change the configuration of existing variables, and the

communication settings for all connected PLCs.

Each PLC is represented by its own group which follows the PLCxx naming scheme. If you want to change the

settings for PLC01, you must select the corresponding group from the group list and then edit its communication

parameters.

For specific Settings required in a S7-1500 and S7-1200 PLC, please refer to Connecting to an S7-1500 and S7-

1200 PLC.

Memory Variables
The VisXpert variable editor also manages internal memory variables that are not connected to any external data

source such as OPC servers or PLC's. This means that you can also add custom memory variables if you should

need them in your application. To add custom memory variables, you can add a new group and select the

memory module for its data driver.

Memory variables only exists on the local station and are not synchronized between all operating stations. This

means that memory variables always have and local scope and should be treated as local to the operating station.

Each operating station will have individual values on these memory variables, since they are never synchronized

between operating stations. Should you need custom variables that are shared between operating stations, you

should share them using and data area in your PLC.

Custom Variables in the PLC
If you want to add custom variables that are communicated with any of the PLCS of your BatchXpert system, you

can do so by adding your custom variables and their address configuration to one of the existing PLCxx variable

groups. You must input the data address of your custom variables in the standard Simatic addressing format.

BatchXpert Engineering 247/283

S7 Communications Settings
The S7-Connection require the Slot and Rack communication god parameters, which should be defined according

to which PLC you are trying to communicate with. If you want to change the settings for PLC01, you must select

the corresponding group from the group list and then edit its communication parameters.

AG-Number: The AG-number, or PLC number, refers

to and running number of your PC connection. This

should be the number of you PLC as configured in

your “Batch Configuration”. for PLC01 it should be 1,

for PLC02 it should be 2 and so on.

IP Address: The IP address should be the address of the specific network adapter used by your PLC to connect to

the project expert station. This is usually the IP address of your internal CPU, or of your external communication

processor, it’s configured in your hardware configuration of your PLC program.

Rack and Slot: Rack and slot off your PLC depends on your specific hardware configuration, but usually follows

this table:

S7-300 series Rack = 2, Slot = 0

S7-400 Series Rack = 3 (usually), Slot = 4. But both parameters depend on your specific configuration

S7-1500 Series Rack = 0, Slot = 0

S7-1200 Series Rack = 0, Slot = 0

Type: The type can usually be left at 300/400 series, but it is recommended to select the correct PLC type you are

connecting to.

BatchXpert Engineering 248/283

Diagnosing PLC communication problems

BatchXpert uses the VisXpert driver infrastructure for data exchange between the HMI application and the

process controllers. If a VisXpert driver encounters any problem while trying to connect exchanging data with PLC,

it will write an appropriate error message into the VisXpert Logging window.

This logging window is part of the VisXpert communication module and should be your first point of reference

when you encounter communication errors with the controller.

In the communication module main window, you can see all error messages in the lower part of the application.

BatchXpert Engineering 249/283

Adjusting Log Level
VisXpert Allows you to set different logging levels to show and hide specific error messages in the log window.

You can customize these log levels from the main menu of the communication module as shown in the picture

below.

Typical Error Messages
All error messages are dependent on the driver used, but for S7 controllers you can observe the following error

messages. The error code returned from the controller can be seen between the parentheses of the error

message of the variable that failed to connect.

• “AG Wurde nicht gefunden”: The PLC could not be connected. Something blocks communication; the IP

address might be wrong or the PLC is blocking communication.

• “DB existiert nicht”: The data block you are trying to read or write from/to is not loaded in the PLC.

Please check your PLC program and our driver variable configuration.

• “Access denied”: the PLC actively rejected the communication request. Maybe there are some settings

that are not correctly set, a Password was set in the PLC or some firewall is rejecting connections.

• “Unspezified Error while initializing the driver”: this error can happen if there is an error in your VisXpert.

You should reinstall VisXpert with the “Reinstall Driver” setting from the installer.

BatchXpert Engineering 250/283

Endianness

One important characteristic of Simatic 7 controllers is that these types of controllers use an CPU with Big endian

architecture. This contrasts with most computer systems which are based on the X86 CPU architecture, and which

uses little endian.

The Endianness of CPU architecture defines how integers are stored in memory and thus also defines how the

memory of these integers is laid out. This becomes important when you are transferring data between two

different CPU architectures with different endianness, such as when you are reading data from a Simatic 7 CPU on

a SCADA operating station. You must keep the endianness in mind since the data layout of status words from

control modules individualization data blocks has to be adapted accordingly on the SCADA systems.

In addition to this you must keep in mind that schematic PLCS implement and byte-oriented memory model

whereas modern SCADA systems implement and word or double word-oriented memory model. For example,

what would be Byte 1.2 would become bit 18 on the SCADA system, since the endianness is going to be corrected

by the corresponding IO communication driver.

Batch expert uses double integers (int32) as their status words for all control modules, which means that all

statuses from the PLC must be converted by the following table on and Scada station:

SCADA bit number Address in PLC

24 0.0

25 0.1

26 0.2

27 0.3

28 0.4

29 0.5

30 0.6

31 0.7

16 1.0

17 1.1

18 1.2

19 1.3

20 1.4

21 1.5

22 1.6

23 1.7

8 2.0

9 2.1

10 2.2

11 2.3

12 2.4

13 2.5

14 2.6

15 2.7

0 3.0

1 3.1

2 3.2

3 3.3

4 3.4

5 3.5

6 3.6

7 3.7

BatchXpert Engineering 251/283

HMI Tag names

In the following description we will refer to the default batch expert take naming scheme as implemented in the

VisXpert SCADA system. These tag names define symbolic names for all data that must be communicated

between the PLC and the HMI system. You can find a detailed list attached to this manual.

The provided variable list defines the following naming schemes:

Control Module Tags
All variables related to control models are composed of three letter control module short name and four-digit

control module number, and dot-separated a post fix denominating its data. For Example:

AIn0001.Sp
AIn0001.St
AIn0001.Val

The Ain denominates an Analog Input, the 0001 denominates Analog Input 1, and the “.Sp”, “.St” and “.Val” the

actual datapoint of the module. Other Examples are:

Act1273.St Status of Actuator 1273
Cnt0188.Val Current Value of Counter 188
DIn0327.St Status of Digital Input 327
…

Control Module Post fixes
Post fix Data Type Description

.St Dint (Int32) Current Status of the Module. This is a “Bitfield” where each bit represents an
individual Status of a Control Module. Please check the appropriate section for
information about the individual bits of this status.

.Sp Real Setpoint. The current Nominal Value for the Control Module. Only applies to
Regulators (PID) and Frequency Converters (FConv)

.Val Real Current Value. The current value of an analog Measurement, counter, or
frequency drive

.Out Real Output. The current Analog Output between 0 a 100% of the module. Only applies
to Regulators (PID) and FConv

Parameter Channel variables
For easier identification of variables related to parameter channels, all parameter channel variables start with a

lowercase “z”, followed by the control module’s short name and the parameter channel number which is PC01.

• zActPC01. Data of Parameter channel 1 for Actuators
• zDInPC01. Data of Parameter channel 1 for Digital Inputs
• zAinPC01. Data of Parameter channel 1 for Analog Inputs

BatchXpert Engineering 252/283

Status Tag Definitions of Control modules

As mentioned in the Endianness section of this manual the addresses from the PLC must be converted to

appropriate addresses for the HMI system. For example, the very first address pit 0.0 in the PLC, becomes bit 24

on the SCADA system after the driver uploaded the data and converted it by its endianness. Each individual bit of

the control module status has the following meaning:

Actuator
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 ACo BOOL automatic control

25 0.1 ExCo BOOL extern control

26 0.2 SCS BOOL status check start

27 0.3 xFBa1 BOOL feedback 1

28 0.4 xFBa2 BOOL feedback 2

29 0.5 Rel BOOL release

30 0.6 Rel2 BOOL release 2

31 0.7 xAuto BOOL extern automatic

16 1.0 ACoHM BOOL automatic control help memory

17 1.1 ExCoHM BOOL extern control help memory

18 1.2 FBaOn BOOL feedback ON intern

19 1.3 FBaOff BOOL feedback OFF intern

20 1.4 FBaChange BOOL change extern feedback (0 FBa1=OFF FBa2=ON / 1 FBa1=ON
FBa2=OFF)

21 1.5 FBa1Active BOOL feedback 1 active

22 1.6 FBa2Active BOOL feedback 2 active

23 1.7 xAutoHM BOOL extern automatic old

8 2.0 GAlQuitt BOOL general alarm acknowledge

9 2.1 Ign BOOL ignore alarm

10 2.2 Sim BOOL simulation

11 2.3 Auto BOOL automatic mode

12 2.4 MCo BOOL manual control

13 2.5 EmRel BOOL emergency release

14 2.6 InterlockGAl BOOL interlock by alarm

15 2.7 Maint BOOL maintenance

0 3.0 GAl BOOL general alarm

1 3.1 GAlS BOOL general alarm save

2 3.2 SCE BOOL status check error

3 3.3 Mov BOOL actuator is moving for visu

4 3.4 On BOOL actuator is ON

5 3.5 Off BOOL actuator is OFF

6 3.6 Out BOOL output

7 3.7 User BOOL free for user program

BatchXpert Engineering 253/283

Digital Input
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 EA0 BOOL enable alarm by 0-signal

25 0.1 EA1 BOOL enable alarm by 1-signal

26 0.2 SCS0 BOOL status check alarm by 0-signal

27 0.3 SCS1 BOOL status check alarm by 1-signal

28 0.4 xSig BOOL signal extern

29 0.5 B29 BOOL spare

30 0.6 B30 BOOL spare

31 0.7 B31 BOOL spare

16 1.0 AlHM BOOL help memory for alarm

17 1.1 ImpHM BOOL help memory for impulse

18 1.2 xSigHM BOOL signal extern help memory

19 1.3 B19 BOOL spare

20 1.4 B20 BOOL spare

21 1.5 B21 BOOL spare

22 1.6 B22 BOOL spare

23 1.7 B23 BOOL spare

8 2.0 GAlQuitt BOOL general alarm acknowledge

9 2.1 Ign BOOL ignore alarm

10 2.2 Sim BOOL simulation

11 2.3 iEA0 BOOL intern alarm by 0

12 2.4 iEA1 BOOL intern alarm by 1

13 2.5 ImpProt BOOL write impulse flank to protocol

14 2.6 ImpNegProt BOOL write negative impulse flank to protocol

15 2.7 Switch BOOL convert as switch output

0 3.0 GAl BOOL general alarm

1 3.1 GAlS BOOL general alarm save

2 3.2 SCE BOOL status check error

3 3.3 Sig BOOL signal state

4 3.4 Imp BOOL impulse flank

5 3.5 ImpNeg BOOL negative impulse flank

6 3.6 B06 BOOL spare

7 3.7 User BOOL free for user

BatchXpert Engineering 254/283

Analog Input
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 ELLA BOOL enable low low alarm

25 0.1 EHHA BOOL enable high high alarm

26 0.2 xAl BOOL alarm from extern

27 0.3 NPA BOOL no periphery adaption

28 0.4 B28 BOOL spare

29 0.5 B29 BOOL spare

30 0.6 B30 BOOL spare

31 0.7 B31 BOOL spare

16 1.0 MLLA BOOL low low alarm - alarm if enabled

17 1.1 MLL BOOL low low limit - warning if enabled

18 1.2 ML BOOL low limit

19 1.3 MSp BOOL setpoint

20 1.4 MH BOOL high limit

21 1.5 MHH BOOL high high limit - warning if enabled

22 1.6 MHHA BOOL high high alarm - alarm if enabled

23 1.7 MHWA BOOL alarm from hardware

8 2.0 GAlQuitt BOOL general alarm acknowledge

9 2.1 Ign BOOL ignore alarm

10 2.2 Sim BOOL simulation

11 2.3 iEHWA BOOL enable hardware alarm

12 2.4 iELLA BOOL enable LL alarm

13 2.5 iEHHA BOOL enable HH alarm

14 2.6 iELLW BOOL enable LL warning

15 2.7 iEHHW BOOL enable HH warning

0 3.0 GAl BOOL general alarm

1 3.1 GAlS BOOL general alarm save

2 3.2 Warn BOOL general warning

3 3.3 Filter1 BOOL filter 1 on (75%)

4 3.4 Filter2 BOOL filter 2 on (88%)

5 3.5 Filter3 BOOL filter 3 on (94%)

6 3.6 ManuInp BOOL manual input (no periphery)

7 3.7 User BOOL memory free for user

BatchXpert Engineering 255/283

Regulator
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 EAl BOOL enable alarm

25 0.1 SCS BOOL status check start

26 0.2 MStC BOOL static output value

27 0.3 MStrt BOOL starting value

28 0.4 MOVMin BOOL output value min.

29 0.5 MOVMax BOOL output value max.

30 0.6 OVOn BOOL output value on

31 0.7 B31 BOOL spare

16 1.0 B16 BOOL spare

17 1.1 B17 BOOL spare

18 1.2 B18 BOOL spare

19 1.3 B19 BOOL spare

20 1.4 AlHM BOOL help memory for alarm

21 1.5 AHystHM BOOL help memory outside hysteresis

22 1.6 StrtHM BOOL help memory starting value active

23 1.7 Warn BOOL warning

8 2.0 GAlQuitt BOOL general alarm acknowledge

9 2.1 Ign BOOL ignore alarm

10 2.2 Sim BOOL simulation

11 2.3 MCOn BOOL mode controller on (0=off)

12 2.4 MSpExt BOOL mode setpoint extern (0=intern)

13 2.5 DisOut BOOL disable output periphery (0=enable)

14 2.6 EW BOOL enable warning

15 2.7 B15 BOOL spare

0 3.0 GAl BOOL general alarm

1 3.1 GAlS BOOL general alarm save

2 3.2 SCE BOOL status check error

3 3.3 Filter1 BOOL filter 1 on (75%)

4 3.4 Filter2 BOOL filter 2 on (88%)

5 3.5 Filter3 BOOL filter 3 on (94%)

6 3.6 CA BOOL control acting (1 = inverse)

7 3.7 User BOOL memory free for user

BatchXpert Engineering 256/283

Counter
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 EAImp BOOL enable impulse alarm

25 0.1 ELLA BOOL enable low low alarm

26 0.2 EHHA BOOL enable high high alarm

27 0.3 xAl BOOL alarm from extern

28 0.4 ResetBlock BOOL interlock counter reset

29 0.5 xSig BOOL impulse input

30 0.6 B30 BOOL spare

31 0.7 B31 BOOL spare

16 1.0 MLLA BOOL low low alarm - alarm if enabled

17 1.1 MLL BOOL low low limit - warning if enabled

18 1.2 ML BOOL low limit

19 1.3 MSp BOOL setpoint

20 1.4 MH BOOL high limit

21 1.5 MHH BOOL high high limit - warning if enabled

22 1.6 MHHA BOOL high high alarm - alarm if enabled

23 1.7 ImpHM BOOL impulse help memory

8 2.0 GAlQuitt BOOL general alarm acknowledge

9 2.1 Ign BOOL ignore alarm

10 2.2 Sim BOOL simulation

11 2.3 Reset BOOL reset counter

12 2.4 iELLA BOOL counting reserve

13 2.5 iEHHA BOOL enable HH alarm

14 2.6 iELLW BOOL enable LL warning

15 2.7 iEHHW BOOL enable HH warning

0 3.0 GAl BOOL general alarm

1 3.1 GAlS BOOL general alarm save

2 3.2 Warn BOOL general warning

3 3.3 Imp BOOL impulse flank

4 3.4 B04 BOOL spare

5 3.5 B05 BOOL spare

6 3.6 B06 BOOL spare

7 3.7 User BOOL memory free for user

BatchXpert Engineering 257/283

Message
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 B24 BOOL spare

25 0.1 B25 BOOL spare

26 0.2 B26 BOOL spare

27 0.3 B27 BOOL spare

28 0.4 xAlarm BOOL signal extern for alarm condition

29 0.5 B29 BOOL spare

30 0.6 B30 BOOL spare

31 0.7 B31 BOOL spare

16 1.0 B16 BOOL spare

17 1.1 B17 BOOL spare

18 1.2 B18 BOOL spare

19 1.3 B19 BOOL spare

20 1.4 B20 BOOL spare

21 1.5 B21 BOOL spare

22 1.6 B22 BOOL spare

23 1.7 B23 BOOL spare

8 2.0 GAlQuitt BOOL general alarm acknowledge

9 2.1 Ign BOOL ignore alarm

10 2.2 Sim BOOL simulation

11 2.3 OPMsg BOOL operator message

12 2.4 B12 BOOL spare

13 2.5 B13 BOOL spare

14 2.6 B14 BOOL spare

15 2.7 B15 BOOL spare

0 3.0 GAl BOOL general alarm

1 3.1 GAlS BOOL general alarm save

2 3.2 OPMsgActive BOOL operator message active

3 3.3 AlarmMsgActive BOOL alarm message active

4 3.4 iAlarm BOOL alarm active intern

5 3.5 B05 BOOL spare

6 3.6 B06 BOOL spare

7 3.7 User BOOL free for user

BatchXpert Engineering 258/283

Switch
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 Set BOOL set software switch

25 0.1 Reset BOOL reset software switch

26 0.2 B26 BOOL spare

27 0.3 B27 BOOL spare

28 0.4 B28 BOOL spare

29 0.5 B29 BOOL spare

30 0.6 B30 BOOL spare

31 0.7 B31 BOOL spare

16 1.0 B16 BOOL spare

17 1.1 B17 BOOL spare

18 1.2 B18 BOOL spare

19 1.3 B19 BOOL spare

20 1.4 B20 BOOL spare

21 1.5 B21 BOOL spare

22 1.6 B22 BOOL spare

23 1.7 B23 BOOL spare

8 2.0 B08 BOOL spare

9 2.1 B09 BOOL spare

10 2.2 B10 BOOL spare

11 2.3 B11 BOOL spare

12 2.4 B12 BOOL spare

13 2.5 B13 BOOL spare

14 2.6 B14 BOOL spare

15 2.7 B15 BOOL spare

0 3.0 B00 BOOL spare

1 3.1 B01 BOOL spare

2 3.2 B02 BOOL spare

3 3.3 Sig BOOL spare

4 3.4 B04 BOOL spare

5 3.5 B05 BOOL spare

6 3.6 B06 BOOL spare

7 3.7 User BOOL free for user

BatchXpert Engineering 259/283

Alarm Groups
HMI

Address
PLC

Address
Symbol Type Remark

24 0.0 B24 BOOL set software switch

25 0.1 Ign BOOL reset software switch

26 0.2 Sim BOOL spare

27 0.3 Auto BOOL spare

28 0.4 B28 BOOL spare

29 0.5 EmRel BOOL spare

30 0.6 B30 BOOL spare

31 0.7 Maint BOOL spare

16 1.0 Gal BOOL spare

17 1.1 Gals BOOL spare

18 1.2 SCE BOOL spare

19 1.3 Warn BOOL spare

20 1.4 Msg BOOL spare

21 1.5 ProcRun BOOL spare

22 1.6 ProcProd BOOL spare

23 1.7 ProcCIP BOOL spare

8 2.0 B08 BOOL spare

9 2.1 B09 BOOL spare

10 2.2 B10 BOOL spare

11 2.3 B11 BOOL spare

12 2.4 B12 BOOL spare

13 2.5 B13 BOOL spare

14 2.6 B14 BOOL spare

15 2.7 B15 BOOL spare

0 3.0 B00 BOOL spare

1 3.1 B01 BOOL spare

2 3.2 B02 BOOL spare

3 3.3 Sig BOOL spare

4 3.4 B04 BOOL spare

5 3.5 B05 BOOL spare

6 3.6 B06 BOOL spare

7 3.7 User BOOL free for user

BatchXpert Engineering 260/283

The HMI Library

When installing the BatchXpert SDK, this also installs multiple HMI libraries into your BatchXpert SDK installation

directory:

“D:\Program Files (x86)\BatchXpert SDK\Visu”

This directory contains an image library, with many images that you can implement into your process screens. You

can find images for different machines, brewing equipment and other type of symbols that are helpful to make

appealing process screens.

VisXpert archive contains all templates, variable tables, process symbol library and a Project Template for you to

use in your project. In these archives you can find all necessary data to update or create new HMI applications.

To update existing HMI applications to newer BatchXpert HMI versions, you should consult the appropriate

Manual, that explains in more detail how to go about updating an existing HMI application from a newer VisXpert

library

If you want to update your existing HMI application to the newest library version, you should refer to the

dedicated manual called “Manual BatchXpert Updating VisXpert HMI” for this, which describes the update

procedure in more detail.

BatchXpert Engineering 261/283

Working with the HMI Library
When working with an HMI library, you want to 1st extract the content of this HMI version that you want to use

into a working directory, for example: “C:\Temp”, and then point do you VisXpert library Path to the newly

created library objects. You can do this in the editor settings of your graphics editor. After setting up the library

directory, all Classes, Windows and script objects can be updated from this library.

Extract to Working directory, in this case C:\Temp

Point Graphics Editor Library path to this Working Directory

BatchXpert Engineering 262/283

Checking your HMI Version
The current HMI version that you are using in your project is always available in the “PLC0xInfoWin” HDMI

screen, that is available in your graphics editor and during runtime. For more detailed information about which

library objects and windows are currently in use, you can use the version control integrated into your graphics

editor.

Checking Version of Individual Classes and Windows
Windows and Class objects have individual version numbers that can be checked against your extracted library by

using the “Window->version info” or “Classes->version info” option from the main menu. This option opens on

dialog that allows you to update existing classes.

BatchXpert Engineering 263/283

Importing Windows and Classes
The version info option only allows you to check objects that are already present in your project against the

version that exist of this object in the library. If you want to add objects from the library that do not currently

exist in your project, you must use the input option from the main menu. From this option you can select the

window or class respectively and insert them into your project to be used. After importing the objects, you can

use the version info dialog to check their version against the library version.

All objects that are part of the library exist in the appropriate subfolder inside your library directory. You just have

to select the appropriate object and Insert it into your project.

Updating/Importing HMI Scripts
Updating scripts works like updating windows and classes, but from the scripts dialog.

If you choose the “update functions” option, all functions that are currently contained in your project will be

updated with the version from the selected library. However sometimes new functions are added to the library

which will not be updated by the “update functions” option.

For this you can use the “Import Function(s)” option and select the script file that you want to import. Since you

can group different script functions into directories, all import script files are also contained in subdirectories in

the library directory. We recommend that you order all these functions in the same

subdirectories as they appear in the library directory. The easiest way to do this, is by

right clicking directly on the folder containing the script functions that you want to

import, and not right clicking from the main “Functions” three item but rather from

the sub directory below this menu option. This allows you to import only functions

belonging to a specific directory.

BatchXpert Engineering 264/283

Adding a new PLC to the HMI

If you want to add a new PLC to your BatchXpert application, you need to add the following components from

your corresponding with expert archive, found in your HMI library, to your HMI application.

Adding a new PLC Group
The first action that you should take this that you add a new PC group

that corresponds to the PLC that you want to add to the System. You do

this by opening the variable editor, and removing the existing PLCxx

variable group if it already exists as a memory driver. This is because the

default BatchXpert project includes PLC02, PLC03 and PLC04 Already

added as memory variables to the project. But since you want to add a

real PLC you must change these variables to the appropriate PLC driver.

After removing the existing PLC group, you can add a new pill C group and

continue with configuration of your communications settings for this PLC.

Adding new PLCxx Text Group
BatchXpert also requires some memory variables for each PLC, which are all configured in the TextPLCxx group

that belongs to a memory driver.

Importing the PLC Variables
After creating a new PLC group, you can now continue to import all variable tables from your HMI library into this

newly created variable group. All variables of the “TextPLCxx” directory must be imported into the appropriate

“TextPLCxx” memory variable group, and all variables contained in the “PLCxx” and “Base Variables” directories

must be imported into the “PLCxx” variable groups. This inputs all variables related to parameter channels,

system parameters and all available control models.

BatchXpert Engineering 265/283

By selecting the appropriate PLC group, you can open the Import dialog from the menu bar on the top and then

select the appropriate variable list that you want to import into each of the groups.

Importing the PLC dependent Windows from your library
After importing all the variables, you only must import all the face plates and PC specific windows for your HMI

application. What is windows can also be found in your HMI library and all windows starting with PLCxx must be

imported into your HMI application.

Currently there is an defect in VisXpert, which does not allow you to import more than about 10 windows at the

same time. To circumvent this please import all windows in batches of at most about 10 windows, and repeat the

process until all windows are imported.

BatchXpert Engineering 266/283

Adding Global Monitoring Scripts
Each PLC requires some commonly used global application scripts, that

monitor the communication and handle some global variables for each PLC.

After adding all the windows and variables you also must add these scripts to

the application. You can import them from the project library or copy them

from an existing PLC and adjust where it is needed.

PLCxx_PermanentActualizedVars

This script is used to maintain references to certain variables that should

always be communicated with the PLC even if no window is actively using

these variables. This means the variables that are used in these scripts are

used so that they get activated by the HMI application and communication gets established with the controllers,

even if these variables are not even used in any of the HMI Windows. This is requeired by some funcionality of

BatchXpert, so that some Variables remain an steady connection to the PLC.

PLCxxCommCheck

This script handles the a live signal from the respective master station to the PLC. PLC sends a life signal that has

to be confirmed by each operating station, where each operating station is identified by its master number. This

script confirms this life signal, depending on the master number of the local station, to the PLC.

PLCxxCommError

If the PLC driver detects an error with the communication to the PLC it sets the appropriate error status in the

“"PLCxx:@ConnectStatus"” variable. This script reacts to changes to this variable and activates the appropriate

alarm and the alarm system and also updates the PLC's internal status.

PLCxxRunStatus

this script is used to detect if on PLC is actually executing the user application. It monitors the PLC system time

and whenever it changes it knows that the user program is actually executing. If this counter is not changed in

more than 5 seconds it activates the appropriate alarm message to tell the user that it's logic controller maybe in

stop mode.

This script also detects if the PLC exists by checking if the timer actually exists.

BatchXpert Engineering 267/283

The Batch Module

BatchXpert adds an “Batch Module” to its VisXpert project structure.

This module is responsible for generating trend recording data, trend

view xml files, and allowing messages for all control modules that are

configured in your project.

The Batch Module is started when the project is started and goes

through the configuration of all your control modules and creates new

trend recording data, Trend few XML configuration files and allow

messages in the case that new modules have been added to BatchXpert.

This means that this module always maintains trend view, trend recording and Alarm configuration in sync with

your control module configuration of BatchXpert. This synchronization process is started when Module is started,

which means that you should restart your project, which in turn restarts the Batch Module, When you have made

changes to any of your control modules.

BatchXpert Engineering 268/283

Show Trends with VisXpert

Opening a Trend window from the HMI
To add a Trend View Button to any of the process graphics, you first need to add

a button or Bitmap which will act as a button for calling the desired Trend view.

Usually you will use the “TrendButton.bmp” as a default trend view invocation

object. You can find a preconfigured “Trend button” in the “Library” window.

In the Trend button object, you must add an “Click” event, that executes an

“Element Script”, which in turn calls one of the “ShowTrendView” functions.

BatchXpert provides multiple script functions that you can put into any button or

object you need to open the trend view. There are functions to show only the

trend view of an specific Analog input, for all Analog values of a unit, or for

custom trend views.

To assign the Script to the Trend button, you must open the “Dynamic” dialog by

double clicking the button in the graphics editor or by pressing “Ctrl+d”. This

opens the “Dynamic Dialog” which allows you to define the Script that will be

executed when a left click happens.

In this script you can call one of the multiple “ShowTrendView” functions to

show the desired trend data. You can also define custom trend views, which you

can show by simply passing in the name of the “.xml” filename of the trend view

data. For custom Trend views, the name of the view that you pass into “ShowTrendView” corresponds to the

filename of the xml configuration file of the View. This configuration file defines the trend curves and their

configuration in the trend viewer.

Figure 8 Show Trend Script for an custom trend view

Figure 7 Trend Button in the "Library"

Figure 6 "Dynamic" Dialog of an
Trend button

BatchXpert Engineering 269/283

Trend View XML files
The Trend View XML files are configuration files that are used by the “Measurement Viewer” application to

configure the trend curves and their configuration to be used. These files store the trend lines that are part of this

trend view, their Min and Maximum values, and other values.

These XML files are in the Project Directory:

<BatchXpert Project Directory>\Visu\BatchXpert\Measure1\Measure1\

Auto Generated Trend Views
The “Batch Module” in VisXpert automatically generates default Trend views for many object, that can directly be

used by calling the appropriate “ShowTrendView” functions from the buttons script. It automatically generates an

“Trend View” xml files. It automatically generates files for each analog control module, such as “Analog inputs”,

“Counters” or “Regulators”.

For each Unit that is configured in BatchXpert, it also generates an “Unit Trend View”, that contains all analog

values that correspond to this Unit.

The auto generated Trend views will follow the following naming convention.

These Auto generated Trend views will be regenerated each time the Project is restarted, since a Project Restart

also restarts the “Batch Module”, which in turn generates these trend views when starting up.

BatchXpert Engineering 270/283

Custom Trend views
To add custom or additional trend lines to a trend view, you can do so directly from the “Measurement Viewer”

that is being opened when clicking on a trend view button in the HMI screen. From there you can add trend lines

from each of the existing archives. After adding the file, you can just save the configuration. The name of the xml

Trend view file that you choose, is the one that you will have to use when calling “ShowTrendView” from your

Scripts.

By default, each Process unit will have its own trend file.

BatchXpert Engineering 271/283

Record custom Trend Value
Trend recordings are managed by the VisXpert SCADA system. BatchXpert integrates with VisXpert and

automatically generates Trend configuration files for all its Control modules that have analog values. This means

that usually you do not need to modify the trend configuration at all.

You can, however, add custom values into the trend configuration or change the configuration of automatically

generated values. The configuration is automatically generated when the system starts up.

Supported Trend Values
VisXpert supports the following values to be recorded as trends

• Integers

• Floating Point

• Boolean

It does however not support recording of variable length data such as “Strings” or “Arrays”

Adding a custom trend to be recorded
The trend recording configuration is done with the “Measurement Recording” editor. This editor allows you to

add new “Channels” to the configuration file and assign a trend archive to it.

After adding the custom value, you can add them to any of you Trend View configurations for diaplay

BatchXpert Engineering 272/283

Adding Batch Number, Step number and Phase
For historical reasons BatchXpert does not have dedicated variables for batch number step number or Phase

numbers. However, you can manually add these variables to your variable configuration by importing the

corresponding variable list into your “PLCxx” (where xx is your plc number) variable Group in the “SPS Daten”

communication Driver.

Locate The Import Tag list
 the import table is located inside your BatchXpert SDK directory, usually located in “C:\Program Files

(x86)\BatchXpert SDK\Visu”. Inside the corresponding VisXpert archive.

The variable list is called “PLCxxUnitDetails.CSV” a can be found inside the “Variables\PlcXX” directory, inside your

VisXpert Archive mentioned above.

BatchXpert Engineering 273/283

Importing Variables
These variables can be imported by using the variable editor of the “SPS Daten” module from the Communication

Module.

From here you can select the file above and select “Overwrite” as import option.

BatchXpert Engineering 274/283

Adding Batch Number to Trends
Sometimes it may be helpful to add the batch number of the currently running batch off on units to the Trend

Graphs. Since the batch number in BatchXpert is an integer not a string, this can be easily achieved. By default,

this batch number is not part of the trend recording but can be manually added easily by following the procedure

above.

If your project does not include variables for the Batch number, you must manually import these variables from

the current HMI project, in your BatchXpert SDK. Please see Adding Batch Number, Step number and Phase for

more details.

Keep in Mind that VisXpert does NOT support Strings or Block variables to be added to the Trend configuration.

This does not affect any standard BatchXpert variables, since these are all Integers or Real variables.

Add a custom Trend Channel to your Tend configuration
Open the “Measurement Logger” editor from the Communications Module.

Select “Channel-Add”
This allows you to add custom variables to be added to the Measurement logging, to be recorded and shown in

trends.

BatchXpert Engineering 275/283

Select the “BatchNo” of the units that you want to record.
Select the BatchNumber, Step Number or any other variables you need.

Now you can use them in your Trend Views

BatchXpert Engineering 276/283

PLC backup

Backup for S7-300 and S7-400 series
BatchXpert includes the “S7 Backup” utility for creacting backups of your PLC data blocks. “S7 Backup” is an small

tool for creating Manual and Automated Backups of all your online controller data of your “Simatic S7”

compatible controllers. This tool connects to the specified Controllers and uploads all available online data and

saves them in Backup files. These file can be archived and restored when required.

The Tool supports the following Cpu:

▪ Siemens S7-300

▪ Siemens S7-400

▪ Vipa Speed 7, 100V. 200V and 300S series

▪ Vipa Speed 7 Slio series

The application can be downloaded by using the “BatchXpert installation Center” or from “S7 Backup – MLogics

Documentation”

Backup for S7-1200 and S7-1500 series
The “S7 Backup” utility unfortunately does not support the newer Simatic PLC series. For these series of PLC’s,

there is the “S7 Backup 1500” utility. This utility serves the same purpose as the old “S7 Backup” utility and can

make backups of your online datablocks.

However this new utility requeires you to Activate Web Server on your PLC. Without the Web Server this utility

does not work.

The Tool supports the following Cpu:

▪ Siemens S7-1200

▪ Siemens S7-1500

The application can be downloaded by using the “BatchXpert installation Center” or from “S7 Backup 1500 –

MLogics Documentation”

https://docu.mlogics-automation.com/s7-backup/
https://docu.mlogics-automation.com/s7-backup/
https://docu.mlogics-automation.com/s7-backup-1500/
https://docu.mlogics-automation.com/s7-backup-1500/

BatchXpert Engineering 277/283

Operating Station Backup

the BatchXpert system incorporates a "project management tool", which allows you to run backups of the entire

system. This application is part of BatchXpert and can be lauched either manually or by installing the automatic

backup tasks from the “BatchXpert Management Console”. You can find mor einformation about this tool in the

“Manual BatchXpert System Backup” manual.

The “BatchXpert Management Console” Allows you to install automatic backup tasks, that will run on set times and

Backup different parts of your project. These automatic backups are implemented as scheduled tasks in the

Windows operating system and can be adjusted manually to the needs off your installation.

By default it backups the full system every three months, trending data also every three months, the database every

month and PLC every week. If you're in a different schedules you can just open the scheduled task and adjust them

as needed.

There's also a scheduled task that allows you to copy the backups to a secondary backup location, which usually is

a pen drive or a network share where you can offload your backups. It is recommended that you always offload

your backups from the local drives of the computer and even replicate them to all other PCs to create multiple

redundancy of your backups.

To avoid filling up the system with backups there's also utility to remove old and obsolete backups. This utility not

simply removes by age but applies some heuristics and some smarts, so that it always maintains at least 3 backup

archives, and only deletes the oldest ones.

BatchXpert Engineering 278/283

Recommended Settings for Touch Panel use

BatchXpert can be used in conjunction with “Touch Panel PC’s”

that are typically installed in electrical panels and act as “Field

HMI” for operators to be used. BatchXpert is generally

optimized to be used with “traditional” computers, and

operated by mouse and keyboard, however it can easily be

adapted for “Touch Panel use”.

Generally, we recommend that you adjust the following settings

in Windows and take the following precautions when

engineering an HMI application with BatchXpert.

Set Display Scaling to 125%
Since touch operation generally requires having bigger buttons, to be able to be reliably being clicked on by

touching the screen. In windows you can set the “Display Scale” to 125%, which increases all text, buttons and

other UI elements by 25%. This essentially increases all UI elements of windows, and BatchXpert applications to

be able to easily click on them by touching the screen.

NOTE: BatchXpert HMI application will not be scaled automatically by increasing the display scale of the operating

system. This means that you must adapt some UI elements that you have put in your SCADA screens.

Use bigger Unit symbols
BatchXpert HMI application will not be scaled automatically by increasing the display scale of the operating

system. This means that you must adapt some UI elements that you have put in your SCADA screens. The best

option to do this is to use the “Unit_ Generic _Big” library object, instead of the regular “Unit_Generic” library

object in your HMI screen. This library object provides bigger patterns to make it easier to be operated reliably

from touch panels.

BatchXpert Engineering 279/283

OnScreenKeyboarManager
When using the operating system, you want the on-screen keyboard to be shown whenever you enter any of the

input boxes of any UI element the operating system. However, tests have shown that this functionality does not

always work reliably when using touch enabled monitors. For this reason, the SCADA system used by BatchXpert,

Includes a small application that monitors system events and shows the on-screen keyboard whenever an input

box is focused.

This small application is automatically started when BatchXpert is started and a touch monitor is detected. This

allows you to use the operating system via the on-screen keyboard. When this application is running a small icon

is shown in the taskbar of windows indicating that this application is available and launching the on-screen

keyboard whenever an input box is active.

This application is started automatically and no settings or manual adjustments need to be made.

BatchXpert Engineering 280/283

System Hardening and Operating system Security

What is built-in administrator account?
In the Windows operating system, the built-in administrator account -- the first account created when the OS was

installed -- has the highest permissions of any profile on the computer system. That means the built-in

administrator account has elevated administrator privileges to do anything on the system without requiring

confirmation.

Windows OS built-in administrator account explained
In Windows systems, the built-in administrator account is like the "root" or "superuser" accounts in other

operating systems. It was originally intended to facilitate system setup and disaster recovery. It can also be used

to run programs and apps before a user account is created.

The built-in administrator account is useful for troubleshooting deep system-level issues but must be used

sparingly. Even when it is enabled cautiously, it's good practice to immediately disable the account once

troubleshooting is complete.

User an “non-Administrator” account for your Operators
When setting up your BatchXpert station, you should always install at least two windows user accounts. One for

administrators, which does have administrative privileges, but is never used for operating purposes. The second

one should be a non-administrator account, which is used by all operators to execute BatchXpert.

BatchXpert is specifically designed to be run in non-administrative environments and does not require

administrative privileges for functioning. The user account that you set up for your operators, with which they will

use BatchXpert, should always be a “Windows User” account, and never an “Windows Administrator” account.

This helps you to minimize the attack surface of your operating stations, and prevent normal operators changing

system level settings, such as IP addresses, or the system clock.

For more information about how to set up your operating stations, you should read the installation manual

“Manual BatchXpert Installation in Windows”, found in your installation directory, or on our knowledge base

www.Docu.MLogics-Automation.com.

http://www.docu.mlogics-automation.com/

BatchXpert Engineering 281/283

Windows Firewall
BatchXpert is specifically designed to work with the integrated windows firewall. This means that you should

always operate your operating stations with the firewall enabled, and there should never be any reason to disable

the windows integrated firewall.

In the command line tools sub directory of your installation directory of BatchXpert, you can find and utility that

can help you to configure your firewall in the case you should need to configure the firewall. However this tool is

already run during installation, which means that your system should be already configured after running the

BatchXpert installer.

Windows Firewall settings

Firewall Utility of BatchXpert, to check and set firewall settings

BatchXpert Engineering 282/283

Antivirus Software
We recommend that you use antivirus software on all operating stations to protect

the operating system from virus infections caused by USB drives or Internet

connections. We do not recommend any antivirus, but we have good experience

with the following antivirus software:

• AntiVir

• Windows Defender

• Avast

If you implement antivirus software on your operating stations, you must make

sure that these software is compatible with BatchXpert by setting scanning

exceptions and appropriate settings.

Endpoint Protection
To further enhance security of your operating stations you can also use

“endpoint protection” software, that allows you to lock down your

operating station and only allow certain applications, scripts end user

actions on the operating station.

There are multiple vendors for Endpoint protection software, from which

we recommend:

• OS Armor from “No Virus Thanks”. (https://www.novirusthanks.com/)

https://www.novirusthanks.com/

BatchXpert Engineering 283/283

Virtualization

BatchXpert is not specifically designed to be run in

virtualization environments, such as VMware or Proxmox,

however it can be installed and be used in virtualized

environments. However, we discourage the use of

virtualization environments for process control systems,

because this reduces the redundancy of your distributed

control system. BatchXpert is designed to run on multiple

independent operating stations, where each operating station

can execute all process control tasks independently from all

other stations, resulting in and redundancy in the whole

system.

Reduced Redundancy in virtualized

environments
If you run these Operating Stations in and virtualized

environment, you essentially run all operating stations on the

same physical hardware, which reintroduces and single point of failure (the server where the virtual machines are

running on) into your process control system.

To run BatchXpert in a virtualized environment you should change some default settings in the project specifically

for trend recording and similar. You can contact MLogics to review options and the necessary adjustments to your

project application.

Recommended Software
For testing and pick up purposes, it may be advantageous to use virtualized operating stations. From our

experience we can recommend products from “VMWare”, which are generally compatible with the BatchXpert

control system.

Licensing in Virtualized environments
Licensing does not change for virtualized environments, which means that each virtual machine is treated as a

separate operating station which requires its own independent license to be operated. This means that you must

have a valid license for each operating station that you intend to run as a virtual machine. Since we discourage

the use of virtualized environments, we do not have specific licensing options for virtualized environments.

